MEMORANDUM

DATE: February 5, 2019

TO: Zoning Review Office

FROM: Office of Administrative Hearings

RE: Case No. 2019-0147-X - Appeal Period Expired

The appeal period for the above-referenced case expired on February 4, 2019. There being no appeal filed, the subject file is ready for return to the Zoning Review Office and is placed in the 'pick up box.'

c: Case File Office of Administrative Hearings IN RE: PETITION FOR SPECIAL EXCEPTION

(715 Westminster Pike)

4th Election District

4th Council District

Elaine Oursler Burns

Legal Owner

SGC Power, LLC

Lessee

Petitioners

BEFORE THE

OFFICE OF

ADMINISTRATIVE HEARINGS

FOR BALTIMORE COUNTY

Case No. 2019-0147-X

OPINION AND ORDER

This matter comes before the Office of Administrative Hearings (OAH) for consideration of a Petition for Special Exception filed on behalf of Elaine Oursler Burns, legal owner and SGC Power, LLC, lessee ("Petitioners"). The special exception petition was filed pursuant to the Baltimore County Zoning Regulations ("BCZR") to approve a solar facility.

Professional engineer David Thaler appeared in support of the petition. Lawrence E. Schmidt, Esq. represented the Petitioners. One neighbor attended the hearing to obtain additional information regarding the project. Substantive Zoning Advisory Committee ("ZAC") comments were received from the Department of Environmental Protection and Sustainability ("DEPS"), the Bureau of Development Plans Review ("DPR") and the Department of Planning ("DOP"). None of the reviewing agencies opposed the request.

In the aggregate the subject property is 49.13 acres and zoned RC-4. The area used for the special exception however will only be slightly larger than the fenced enclosure surrounding the proposed solar panels, which is approximately 10.76 acres in size. Petitioners noted this will be an unmanned facility that will be visited twice yearly for maintenance and inspection. The property will not be lighted and there will be no signage visible from Maryland Route 140.

ONDEN	TEOLIVED I OILL	
Date	1-4-19	
Ву	pu	

GENER RECEIVED FOR FILING

Special Exception

Under Maryland law, a special exception use enjoys a presumption that it is in the interest of the general welfare, and therefore, valid. *Schultz v. Pritts*, 291 Md. 1 (1981). The *Schultz* standard was revisited in *Attar v. DMS Tollgate*, *LLC*, 451 Md. 272 (2017), where the court of appeals discussed the nature of the evidentiary presumption in special exception cases. The court again emphasized a special exception is properly denied only when there are facts and circumstances showing that the adverse impacts of the use at the particular location in question would be above and beyond those inherently associated with the special exception use.

Mr. Thaler, who was accepted as an expert, opined Petitioners satisfied all requirements set forth in BCZR Section 502.1 and the Maryland case law interpreting that provision. He testified that in his opinion this site is ideal for the proposed use, especially since the property slopes upward 30 +/- feet from Route 140 and the solar panels would be situated on the other side of that slope. This means of course the panels would not be visible to motorists on Route 140 which, as noted in the DOP's ZAC comment, is designated as a scenic route in Master Plan 2020.

For the same reason Mr. Thaler noted glare will not be an issue in this case, since the fixed panels will not be visible from the roadway and will also face south, away from the road and nearby homes. Based on this testimony and the exhibits presented at the hearing I believe Petitioners have established a *prima facie* case entitling them to the special exception, and in the absence of any evidence to the contrary the petition will be granted.

The only remaining issue concerns the fence which would enclose the solar panels. Petitioners submitted a photograph of an agricultural-style fence (Pets. Ex. 4) which they believe would be in keeping with the rural setting. The Bureau of DPR and the DOP, on the other hand,

	HEDEIVED LOUITING
Date	1-4-19

FARIVER FAR EILING

suggest a black vinyl coated chain-link fence be used. While I agree with Petitioners the agricultural fence shown in Exhibit 4 would be most appropriate for this site, I will defer to the expertise of the County's landscape architect to make the final determination.

THEREFORE, IT IS ORDERED this 4th day of January, 2019, by this Administrative Law Judge, that the Petition for Special Exception for a solar facility be and is hereby GRANTED.

The relief granted herein shall be subject to the following:

- Petitioners may apply for necessary permits and/or licenses upon receipt
 of this Order. However, Petitioners are hereby made aware that
 proceeding at this time is at their own risk until 30 days from the date
 hereof, during which time an appeal can be filed by any party. If for
 whatever reason this Order is reversed, Petitioners would be required to
 return the subject property to its original condition.
- 2. Petitioners must comply with the ZAC comment submitted by the DEPS, a copy of which is attached hereto and made a part hereof.
- 3. Prior to issuance of permits Petitioners must submit for approval by Baltimore County a landscape plan for the site.
- 4. No barbed wire fencing shall be permitted in connection with the solar facility.

Any appeal of this decision must be made within thirty (30) days of the date of this Order.

JOHN E. BEVERUNGEN Administrative Law Judge for Baltimore County

JEB/sln

OHDEH	HEAGINGO LOU LICITO
Date	1-4-19
B.,	100

CALL RESENVEN EAD EILING

3

BALTIMORE COUNTY, MARYLAND

Inter-Office Correspondence

TO:

Hon. Lawrence M. Stahl; Managing Administrative Law Judge

Office of Administrative Hearings

FROM:

Jeff Livingston, Department of Environmental Protection and

Sustainability (EPS) - Development Coordination

DATE:

November 19, 2018

SUBJECT:

DEPS Comment for Zoning Item

2019-0147-X

Address

715 Westminster Pike

(Burns Property)

Zoning Advisory Committee Meeting of November 12, 2018.

- X The Department of Environmental Protection and Sustainability offers the following comments on the above-referenced zoning item:
 - <u>X</u> Development of the property must comply with the Regulations for the Protection of Water Quality, Streams, Wetlands and Floodplains (Sections 33-3-101 through 33-3-120 of the Baltimore County Code-a.k.a. Forest Buffer Law).
 - <u>X</u> Development of this property must comply with the Forest Conservation Regulations (Sections 33-6-101 through 33-6-122 of the Baltimore County Code).

Additional Comments:

The Forest Buffer Easement may not be trimmed or maintained for operation of the solar facility unless a variance is requested and granted to Section 33-3-112 of the Forest Buffer Law.

The solar facility cannot be constructed in non-tidal wetlands or the Forest buffer Easement. It cannot be determined from the plan accompanying the zoning petition if such impacts are proposed.

All afforestation shall occur in and adjacent to the Forest Buffer onsite.

Reviewer: Glenn Shaffer ORDER RECEIVED FOR FILING

C:\Users\snuffer\AppData\Local\Microsoft\Windows\Temporary Internet Date. Files\Content.Outlook\WPHS9SSK\ZAC 19-0147-X-715 Westminster Pike.doc

PW

PETITION FOR ZONING HEARING(S)

To be filed with the Department of Permits, Approvals and Inspections
se of Administrative Law of Baltimore County for the property

Address 715 Westminster Pike	of Baltimore County for the property located at: which is presently zoned RC4
Deed References: 31741/192	10 Digit Tax Account # 0415077025
Property Owner(s) Printed Name(s) Elaine Oursler Bu	urns
(SELECT THE HEARING(S) BY MARKING \underline{X} AT THE APPROP	PRIATE SELECTION AND PRINT OR TYPE THE PETITION REQUEST)
	Baltimore County and which is described in the description de a part hereof, hereby petition for:
a Special Hearing under Section 500.7 of the Zoni or not the Zoning Commissioner should approve	ng Regulations of Baltimore County, to determine whether
2 a Special Exception under the Zoning Regulations	s of Baltimore County to use the herein described property for
Please see attached.	
3 a Variance from Section(s)	
(Indicate below your hardship or practical difficulty you need additional space, you may add an attachment of the property is to be posted and advertised as prescribed by the zoning regular, or we, agree to pay expenses of above petition(s), advertising, posting, and restrictions of Baltimore County adopted pursuant to the zoning law for Legal Owner(s) Affirmation: I / we do so solemnly declare and affirm, unwhich is the subject of this / these Petition(s). Contract Purchaser/Lessee:	ations. etc. and further agree to and are to be bounded by the zoning regulations
Bruce Wilson, Authorized Rep. of SGC Power, LLC	Elaine Oursler Burns
Name- Type or Print Signature	Name #1 – Type or Print Name #2 – Type or Print Name #2 – Type or Print Signature #1 Signature #2
6865 Deerpath Road Elkridge MD	Signature #1 Signature # 2 715 Westminster Pike Reisterstown MD
Mailing Address City State	Mailing Address City State
21075	21136
Zip Code Telephone # Email Address	Zip Code Telephone # Email Address
Attorney for Petitioner:	Representative to be contacted:
Lawrence E. Schmidt, Smith, Gildea & Schmidt, LLC	Lawrence E. Schmidt, Smith, Gildea & Schmidt, LLC
Zip Code Telephone # Email Address Attorney for Petitioner: Lawrence E. Schmidt Smith, Gildea & Schmidt, LLC Name- Type or Print Signature 600 Weeklestes Leave Suite 200	Name – Type or Print
Signature	Signature
000 VV3Striget Avenue, Suite 200 TOWSON MID	600 Washington Avenue, Suite 200 TOWSON MD
Mailing Address City State 21204 (410) 821-0070 ,lschmidt@sgs-law.com	Mailing Address City State
21204 (410) 821-0070 / Ischmidt@sgs-law.com Zip Code Telephone # Email Address	Zip Code Telephone # Email Address
	25
CASE NUMBER 2019 - 0147 - X Filing Date 4 11 18	Do Not Schedule Dates: Reviewer

the specific terms of the second of the seco

SETTING TO SET TO SET TO SET OF THE SET OF T

and the second of the second o

A SAME OF THE PERSON OF THE PE

S. Sp. S.

t to e in the second .,,

ATTACHMENT TO PETITION FOR SPECIAL EXCEPTION

715 Westminster Pike 4th Councilmanic District 4th Election District

Special Exception Relief:

- 1. To grant Special Exception relief for a solar facility pursuant to BCZR § 4F-102 (as established by Bill 37-17); and
- 2. For such other and further relief as may be required by the Administrative Law Judge for Baltimore County.

Item #0147

ZONING DESCRIPTION

715 WESTMINSTER PIKE

Beginning for the same on the south side of Westminster Pike, approximately 373 feet southeasterly from the centerline of the intersection of Gores Mill Road and Westminster Pike, thence running the following five (5) courses and distances:

- 1. South 67°38'10" East 945.85 feet to a point; thence,
- 2. South 22°21'50" West 2,020.75 feet to a point; thence,
- 3. North 48°52'54" West 862.27 feet to a point; thence,
- 4. North 26°58'50" East 237.88 feet to a point; thence,
- North 16°44'00" East 1,513.71 feet to the point of beginning.
 Containing 37.13 acres of land, more or less.

Saving and excepting the existing dwelling site, as now described,

Beginning for the same at a point distant South 07°01'41" West 415.24 feet from the beginning of the above described parcel, thence running the following eight (8) courses and distances:

- 1. South 67°51'29" East 371.71 feet to a point; thence
- 2. South 21°18'07" West 296.34 feet to a point; thence
- 3. North 66°33'29" West 67.06 feet to a point; thence
- 4. South 22°32'07" West 138.50 feet to a point; thence
- 5. North 69°51'51" West 75.56 feet to a point; thence

Item HO147

Page 2 of 2 Zoning Description Westminster Pike, 715 October 30, 2018

- 6. North 64°37'30" West 77.32 feet to the point; thence
- 7. North 19°39'22" West 192.13 feet to a point, thence
- 8. North 16°44'00" East 289.63 feet to the point of beginning.

Containing 3.12 acres of land, more or less.

The zoning parcel as described herein is 34.01 acres of land, more or less.

Located in the Fourth Election District and the Fourth Councilmanic District of Baltimore County, Maryland.

Item#0147

The Daily Record

11 East Saratoga Street Baltimore, MD 21202-2199 (443) 524-8100

http://www.thedailyrecord.com

PUBLISHER'S AFFIDAVIT

We hereby certify that the annexed advertisement was published in The Daily Record, a daily newspaper published in the State of Maryland 1 times on the following dates:

12/13/2018

Order#: Case #:

11660949

2019-0147-X

Description:

NOTICE OF ZONING HEARING CASE NUMBER: 2019-0147-X

(Representative Signature)

NOTICE OF ZONING HEARING

The Administrative Law Judge of Baltimore County, by authority of the Zoning Act and Regulations of Baltimore County, will hold a public hearing in Towson, Maryland on the property identified herein as follows: CASE NUMBER: 2019-0147-X

715 Westminster Pike S/s Westminster Pike, 370 ft. S/e of centerline of Gores Mill Road 4th Election District - 4th Councilmanic District

Legal Owners: Elaine Oursler Burns

Contract Purchaser/Lessee: SGC Power, LLC Special Exception for relief for a solar facility; for such other and further relief as may be required by the Administrative Law Judge for Baltimore

Hearing Wednesday, January 2, 2019 at 1:30 p.m. in Room 205, Jefferson Building, 105 West Chesapeake, Avenue, Towson 21204

Arnold Jablon

Director of Permits, Approvals and Inspections for Baltimore County

NOTES: (1) HEARINGS ARE HANDICAPPED ACCESSIBLE FOR SPECIAL
ACCOMODATIONS, PLEASE CONTACT THE ADMINISTRATIVE HEARINGS
OFFICE AT 410-887-3868.

(2) FOR INFORMATION CONCERNING THE FILE ANDIOR HEARING,
CONTACT THE ZONING REVIEW OFFICE AT 410-887-3391.

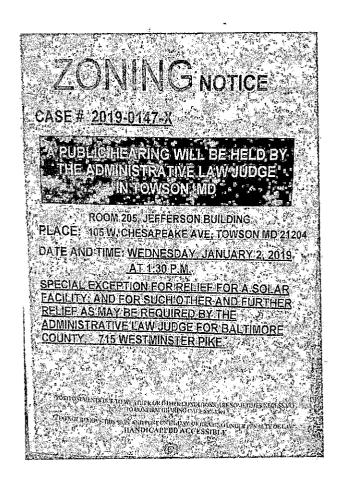
d13

CERTIFICATE OF POSTING

ATTENTION: KRISTEN LEWIS

DATE: 12/13/2018

Case Number: 2019-0147-X


Petitioner / Developer: LAWRENCE SCHMIDT, ESQ. ~ BRUCE WILSON

ELAINE OUSLER BURNS

Date of Hearing: JANUARY 2, 2019

This is to certify under the penalties of perjury that the necessary sign(s) required by law were posted conspicuously on the property located at: 715 WESTMINSTER PIKE

The sign(s) were posted on: DECEMBER 13, 2018

Linda O'Keefe (Printed Name of Sign Poster) 523 Penny Lane (Street Address of Sign Poster) Hunt Valley, Maryland 21030 (City, State, Zip of Sign Poster) 410 – 666 – 5366

(Telephone Number of Sign Poster)

Background photo 1st Sign posted @ 715 Westminster Pike 12/13/2018

Background photo 2nd Sign posted @ 715 Westminster Pike 12/13/2018 CASE # 2019-0147-X

DONALD I. MOHLER III County Executive

ARNOLD JABLON
Deputy Administrative Officer
Director, Department of Permits,
Approvals & Inspections

November 30, 2018

NOTICE OF ZONING HEARING

The Administrative Law Judge of Baltimore County, by authority of the Zoning Act and Regulations of Baltimore County, will hold a public hearing in Towson, Maryland on the property identified herein as follows:

CASE NUMBER: 2019-0147-X

715 Westminster Pike

S/s Westminster Pike, 370 ft. S/e of centerline of Gores Mill Road

4th Election District - 4th Councilmanic District

Legal Owners: Elaine Oursler Burns

Contract Purchaser/Lessee: SGC Power, LLC

Special Exception for relief for a solar facility; for such other and further relief as may be required by the Administrative Law Judge for Baltimore County.

Hearing: Wednesday, January 2, 2019 at 1:30 p.m. in Room 205, Jefferson Building, 105 West Chesapeake Avenue, Towson 21204

Arnold Jablon Director

AJ:kl

C: Lawrence Schmidt, 600 Washington Avenue, Ste. 200, Towson 21204 Bruce Wilson, SGC Power, LLC, 6865 Deerpath Road, Elkridge 21075 Elaine Oursler Burns, 715 Westminster Pike, Reisterstown 21136

NOTES: (1) THE PETITIONER MUST HAVE THE ZONING NOTICE SIGN POSTED BY AN APPROVED POSTER ON THE PROPERTY BY THURS., DECEMBER 13, 2018

- (2) HEARINGS ARE HANDICAPPED ACCESSIBLE; FOR SPECIAL ACCOMMODATIONS PLEASE CALL THE ADMINISTRATIVE HEARINGS OFFICE AT 410-887-3868.
- (3) FOR INFORMATION CONCERNING THE FILE AND/OR HEARING, CONTACT THE ZONING REVIEW OFFICE AT 410-887-3391.

TO: THE DAILY RECORD

Thursday, December 13, 2018 - Issue

Please forward billing to:

Lawrence Schmidt Smith, Gildea & Schmidt 600 Washington Avenue, Ste. 200 Towson, MD 21204

410-821-0070

NOTICE OF ZONING HEARING

The Administrative Law Judge of Baltimore County, by authority of the Zoning Act and Regulations of Baltimore County, will hold a public hearing in Towson, Maryland on the property identified herein as follows:

CASE NUMBER: 2019-0147-X

715 Westminster Pike

S/s Westminster Pike, 370 ft. S/e of centerline of Gores Mill Road

4th Election District – 4th Councilmanic District

Legal Owners: Elaine Oursler Burns

Contract Purchaser/Lessee: SGC Power, LLC

Special Exception for relief for a solar facility; for such other and further relief as may be required by the Administrative Law Judge for Baltimore County.

Hearing: Wednesday, January 2, 2019 at 1:30 p.m. in Room 205, Jefferson Building, 105 West Chesapeake Avenue, Towson 21204

Arnold Jablon

Director of Permits, Approvals and Inspections for Baltimore County

NOTES: (1) HEARINGS ARE HANDICAPPED ACCESSIBLE; FOR SPECIAL ACCOMODATIONS, PLEASE CONTACT THE ADMINISTRATIVE HEARINGS OFFICE AT 410-887-3868.

(2) FOR INFORMATION CONCERNING THE FILE AND/OR HEARING, CONTACT THE ZONING REVIEW OFFICE AT 410-887-3391.

RE: PETITION FOR SPECIAL EXCEPTION *
715 Westminster Pike; S/S Westminster Pike,
370' SE of Gores Mill Road *
4th Election & 4th Councilmanic Districts
Legal Owner(s): Elaine Oursler Burns
Contract Purchaser(s): SGC Power, LLC
Petitioner(s) *

BEFORE THE OFFICE

OF ADMINSTRATIVE

HEARINGS FOR

BALTIMORE COUNTY

2019-147-X

* * * * * * * * * *

ENTRY OF APPEARANCE

Pursuant to Baltimore County Charter § 524.1, please enter the appearance of People's Counsel for Baltimore County as an interested party in the above-captioned matter. Notice should be sent of any hearing dates or other proceedings in this matter and the passage of any preliminary or final Order. All parties should copy People's Counsel on all correspondence sent and all documentation filed in the case.

RECEIVED

NOV 08 2018

Peter Max Zummerman

PETER MAX ZIMMERMAN
People's Counsel for Baltimore County

Cook S Demlie

CAROLE S. DEMILIO Deputy People's Counsel Jefferson Building, Room 204 105 West Chesapeake Avenue Towson, MD 21204 (410) 887-2188

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that on this 8th day of November, 2018, a copy of the foregoing Entry of Appearance was mailed to Lawrence Schmidt, Esquire, 600 Washington Avenue, Suite 200, Towson, Maryland 21204, Attorney for Petitioner(s).

PETER MAX ZIMMERMAN
People's Counsel for Baltimore County

JOHN A. OLSZEWSKI, JR. County Executive

DIRECTOR
Department of Permits,
Approvals & Inspections

December 27, 2018

Lawrence M. Schmidt Smith, Gildea & Schmidt, LLC 600 Washington Avenue, Ste. 200 Towson, MD 21204

RE: Case Number: 2019-0147-X, Address: 715 Westminster Pike

To Whom It May Concern:

The above referenced petition was accepted for processing **ONLY** by the Bureau of Zoning Review, Department of Permits, Approvals, and Inspection (PAI) on November 1, 2018. This letter is not an approval, but only a **NOTIFICATION**.

The Zoning Advisory Committee (ZAC), which consists of representatives from several approval agencies, has reviewed the plans that were submitted with your petition. All comments submitted thus far from the members of the ZAC are attached. These comments are not intended to indicate the appropriateness of the zoning action requested, but to ensure that all parties (zoning commissioner, attorney, petitioner, etc.) are made aware of plans or problems with regard to the proposed improvements that may have a bearing on this case. All comments will be placed in the permanent case file.

If you need further information or have any questions, please do not hesitate to contact the commenting agency.

Very truly yours,

W. Carl Richards, Jr. Supervisor, Zoning Review

WCR/kl

Enclosures

c: People's Counsel
Bruce Wilson, 6865 Deerpath Road, Elkridge 21075
Elaine Oursler Burns, 715 Westminster Pike, Reisterstown 21136

1:30 PM

BALTIMORE COUNTY, MARYLAND INTER-OFFICE MEMORANDUM

TO:

Arnold Jablon

DATE: 12/4/2018

Deputy Administrative Officer and

Director of Permits, Approvals and Inspections

FROM:

Andrea Van Arsdale

Director, Department of Planning

SUBJECT: ZONING ADVISORY COMMITTEE COMMENTS

Case Number: 19-147

INFORMATION:

Property Address:

715 Westminster Pike Elaine Oursler Burns

Petitioner: Zoning:

RC4

Requested Action:

Special Exception

RECEIVED

DEC 0 5 2018

OFFICE OF ADMINISTRATIVE HEARINGS

The Department of Planning has reviewed the petition for a special exception to use the property for a solar facility.

A site visit was conducted on November 14, 2018. Westminster Pike is a Master Plan 2020 designated scenic route presenting an "expansive view" as defined in the Comprehensive Manual of Development Policies (CMDP pg.177). When developing on a scenic route, the CMDP development guidelines instructs one to "maintain a buffer between the road and the new development" (CMDP pg. 180).

The Department supports the Baltimore County Landscape Architect in planting requirements deemed necessary to include interior contour screening and other planting schemes that will mitigate the visual impact of the special exception proposal upon the scenic route.

The subject property is within the Master Plan 2020 Resource Preservation Area (RPA) land management area. One mission of the RPA is to preserve environmental resources. The R.C 4 watershed protection zone designation for the site reinforces this goal through establishing limits on the amount of lot coverage pursuant to BCZR §1A03.4.B.3

The Department has no objection to granting the petitioned zoning relief conditioned upon the following:

- The Department will support the Department of Environmental Protection and Sustainability in any conditions that may be imposed to protect the water resource.
- Proposed perimeter fence shall be black vinyl coated chain-link fence.
- Pursuant to BCZR §502.1.A, petitioners shall demonstrate to the satisfaction of the Administrative Law Judge that the facility will not be detrimental to the adjacent residential properties as a result of glare emanating from the facility.
- Petitioners shall note on the plan that the proposed solar facility will be subject to BCZR §4E-107.

Date: 12/4/2018 Subject: ZAC # 19-147

Page 2

- Petitioners shall certify by note on the plan that the proposed solar facility will not exceed the
 maximum permitted number of facilities allowed in its respective councilmanic district. If
 approved, Petitioners shall submit to this Department at the time of building permit application
 the final fixed location and area of the facility by coordinate data so that an inventory may be
 kept.
- Lighting shall be limited to what is required for security purposes only and will be sited in such a way as to have minimal spillage onto neighboring properties.
- · Signage shall be limited to that which is necessary for safety and security purposes.
- No deliveries or outdoor maintenance which may generate excessive noise may occur on-site between the hours of 6 P.M. through 6 A.M.

For further information concerning the matters stated herein, please contact Wally Lippincott at 410-887-3480.

Prepared by:

Lloyd T. Moxley

Carl

Division Chief:

Jenifer G. Nugent

AVA/JGN/LTM/

c: Wally Lippincott

James Hermann, R.L.A., Department of Permits, Approvals and Inspections

Lawrence E. Schmidt, Smith, Gildea & Schmidt, LLC

Office of the Administrative Hearings

People's Counsel for Baltimore County

BALTIMORE COUNTY, MARYLAND

Inter-Office Correspondence

ADMINISTRATION 2018

ATIVE OF TRARINGS

TO:

Hon. Lawrence M. Stahl; Managing Administrative Law Judge

Office of Administrative Hearings

FROM:

Jeff Livingston, Department of Environmental Protection and

Sustainability (EPS) - Development Coordination

DATE:

November 19, 2018

SUBJECT:

DEPS Comment for Zoning Item

2019-0147-X

Address

715 Westminster Pike

(Burns Property)

Zoning Advisory Committee Meeting of November 12, 2018.

- X The Department of Environmental Protection and Sustainability offers the following comments on the above-referenced zoning item:
 - <u>X</u> Development of the property must comply with the Regulations for the Protection of Water Quality, Streams, Wetlands and Floodplains (Sections 33-3-101 through 33-3-120 of the Baltimore County Code-a.k.a. Forest Buffer Law).
 - <u>X</u> Development of this property must comply with the Forest Conservation Regulations (Sections 33-6-101 through 33-6-122 of the Baltimore County Code).

Additional Comments:

The Forest Buffer Easement may not be trimmed or maintained for operation of the solar facility unless a variance is requested and granted to Section 33-3-112 of the Forest Buffer Law.

The solar facility cannot be constructed in non-tidal wetlands or the Forest buffer Easement. It cannot be determined from the plan accompanying the zoning petition if such impacts are proposed.

All afforestation shall occur in and adjacent to the Forest Buffer onsite.

Reviewer:

Glenn Shaffer

C:\Users\snuffer\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\WPHS9SSK\ZAC 19-0147-X-715 Westminster Pike.doc

BALTIMORE COUNTY, MARYLAND

Inter-Office Correspondence

RECEIVED

NOV 2 9 2018

OFFICE OF ADMINISTRATIVE HEARINGS

TO:

2000

Hon. Lawrence M. Stahl; Managing Administrative Law Judge

Office of Administrative Hearings

FROM:

Jeff Livingston, Department of Environmental Protection and

Sustainability (EPS) - Development Coordination

DATE:

November 19, 2018

SUBJECT:

DEPS Comment for Zoning Item

2019-0147-X

Address

715 Westminster Pike

(Burns Property)

Zoning Advisory Committee Meeting of November 12, 2018.

- X The Department of Environmental Protection and Sustainability offers the following comments on the above-referenced zoning item:
 - <u>X</u> Development of the property must comply with the Regulations for the Protection of Water Quality, Streams, Wetlands and Floodplains (Sections 33-3-101 through 33-3-120 of the Baltimore County Code-a.k.a. Forest Buffer Law).
 - <u>X</u> Development of this property must comply with the Forest Conservation Regulations (Sections 33-6-101 through 33-6-122 of the Baltimore County Code).

Additional Comments:

The Forest Buffer Easement may not be trimmed or maintained for operation of the solar facility unless a variance is requested and granted to Section 33-3-112 of the Forest Buffer Law.

The solar facility cannot be constructed in non-tidal wetlands or the Forest buffer Easement. It cannot be determined from the plan accompanying the zoning petition if such impacts are proposed.

All afforestation shall occur in and adjacent to the Forest Buffer onsite.

Reviewer: Glenn Shaffer

C:\Users\snuffer\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\WPHS9SSK\ZAC 19-0147-X-715 Westminster Pike.doc

me To

BALTIMORE COUNTY, MARYLAND

INTEROFFICE CORRESPONDENCE

TO:

Arnold Jablon, Director

DATE: November 26, 2018

Department of Permits, Approvals

And Inspections

FROM:

Vishnu Desai, Supervisor

Bureau of Development Plans Review

SUBJECT:

Zoning Advisory Committee Meeting

For November 12, 2018 Item No. 2019-0147-X

The Bureau of Development Plans Review has reviewed the subject zoning items and we have the following comments

If Special Exception is granted, a Landscape Plan is required per the requirements of the Landscape Manual, Bill No. 37-17 and the CMDP. Specific landscape comments:

- 1. Westminster Pike is a Baltimore County Scenic Route,
- 2. Perimeter landscape buffers may be required in some locations,
- 3. Must minimize tree and vegetation removal,
- 4. Solar panels are considered a utility and should be designed and located to harmonize with the surroundings and to create the least visual impact.
- 5. Proposed perimeter fence shall be black vinyl-coated chain-link fence,
- 6. More comments may be rendered during review of the landscape plan.

The on-site access road extension back to the equipment pad shall be dustless and durable.

VKD: cen cc: file

BALTIMORE COUNTY, MARYLAND

INTEROFFICE CORRESPONDENCE

TO:

Arnold Jablon, Director

DATE: December 5, 2018

Department of Permits, Approvals

And Inspections

MCL

FROM:

Vishnu Desai, Supervisor

Bureau of Development Plans Review

SUBJECT:

Zoning Advisory Committee Meeting

For November 12, 2018 Item No. 2019-0147-X

The Bureau of Development Plans Review has reviewed the subject zoning items and we have the following comments.

If Special Exception is granted a landscape plan is required per the requirements of the Landscape Manual, Bill No. 37-17 and the CMDP. Specific landscape comments:

- 1. Westminster Pike is a Baltimore County Scenic Route,
- 2. Perimeter landscape buffers may be required in some locations,
- 3. Must minimize tree and vegetation removal,
- 4. Solar panels are considered a utility and should be designed and located to harmonize with the surroundings and to create the least visual impact.
- 5. Proposed perimeter fence shall be black vinyl-coated chain-link fence,
- 6. More comments may be rendered during review of the landscape plan,

The on-site access road extension back to the equipment pad shall be dustless and durable.

VKD: cancc: file

Larry Hogan Governor Boyd K. Rutherford Lt. Governor Pete K. Rahn Secretary Gregory Slater Administrator

Date: ///7/18

Ms. Kristen Lewis
Baltimore County Department of
Permits, Approvals & Inspections
County Office Building, Room 109
111 West Chesapeake Avenue
Towson, Maryland 21204

Dear Ms. Lewis:

We have reviewed the site plan to accompany petition for variance on the subject of the Case number referenced below, which was received on 11/7/18. A field inspection and internal review reveals that an entrance onto 14/0 consistent with current State Highway Administration guidelines is not required. Therefore, SHA has no objection to approval for Special Exception Case Number 2019-0147-X.

Elaine Ourster Burns 715 Westminster Pike

Should you have any questions regarding this matter feel free to contact Richard Zeller at 410-229-2332 or 1-866-998-0367 (in Maryland only) X 2332 or by email at (rzeller@sha.state.md.us).

Sincerely,

Wendy Wolcott, P.L.A.

Metropolitan District Engineer

Maryland Department of Transportation

State Highway Administration

District 4 - Baltimore and Harford Counties

WW/RAZ

BALTIMORE COUNTY, MARYLAND

Inter-Office Correspondence

TO:

Hon. Lawrence M. Stahl; Managing Administrative Law Judge

Office of Administrative Hearings

FROM:

Jeff Livingston, Department of Environmental Protection and

Sustainability (EPS) - Development Coordination

DATE:

November 19, 2018

SUBJECT:

DEPS Comment for Zoning Item

2019-0147-X

Address

715 Westminster Pike

(Burns Property)

Zoning Advisory Committee Meeting of November 12, 2018.

X The Department of Environmental Protection and Sustainability offers the following comments on the above-referenced zoning item:

- <u>X</u> Development of the property must comply with the Regulations for the Protection of Water Quality, Streams, Wetlands and Floodplains (Sections 33-3-101 through 33-3-120 of the Baltimore County Code-a.k.a. Forest Buffer Law).
- <u>X</u> Development of this property must comply with the Forest Conservation Regulations (Sections 33-6-101 through 33-6-122 of the Baltimore County Code).

Additional Comments:

The Forest Buffer Easement may not be trimmed or maintained for operation of the solar facility unless a variance is requested and granted to Section 33-3-112 of the Forest Buffer Law.

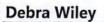
The solar facility cannot be constructed in non-tidal wetlands or the Forest buffer Easement. It cannot be determined from the plan accompanying the zoning petition if such impacts are proposed.

All afforestation shall occur in and adjacent to the Forest Buffer onsite.

Reviewer:

Glenn Shaffer

C:\Users\mclark\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\57K2D3FZ\ZAC 19-0147-X-715 Westminster Pike (002).doc


OFFICE	OF BUD	GET AND	ARYLANI) FINANC RECEIPT	D E		N o. Date:	1771	, ,	11/20/300 11/20/300 11/4/			iń:
Fund	Dept	Unit	Sub Unit	Rev Source/ Obj	Sub Rev/ Sub Obj	Dept Obj	BS Acct	,	VAECE UPT A	<i>1956</i> 08 528 <i>20</i> 41	TIAN 2016 NO VERIFICATION	, # !
<u>297</u>	30 to	.7 <u>000</u>		. 50				550	20° Feri	t Iot ,no co	\$500,00 1,00	č;
Rec From:						Total:		<u>()()</u>	F1.17	1#60 0	unts, Narvland	
For:		J	M : HO	YELLOW		# 2 	0/9 ~_			- - - - -	CASHIER'S VALIDATION	
WHITE -	CASHIER	PINK - AG	ASE PRES				35	-			•	

Office of Administrative Hearings 105 West Chesapeake Avenue, Room 103 Jefferson Building Towson, Maryland 21204

Return Service Requested

Maribeth Diemer 10625 St. Paul Avenue Woodstock, MD 21163

From:

Administrative Hearings

Sent: Wednesday, January 02, 2019 12:58 PM

To: Maribeth Diemer

Subject: RE: Case Number: 2019-0147-X interested party

Ms. Diemer,

This is to acknowledge receipt of your correspondence, which has been placed in the case file for today's hearing.

Thank you for contacting the Office of Administrative Hearings.

----Original Message----

From: Maribeth Diemer [mailto:maribeth-13@att.net]

Sent: Wednesday, January 02, 2019 12:12 PM

To: Administrative Hearings <administrativehearings@baltimorecountymd.gov>

Cc: Cathy Wolfson <oakknob@comcast.net>; GPCA Communications Chair <gpca21163@gmail.com>

Subject: Case Number: 2019-0147-X interested party

To Whom It May Concern:

I am expressing my concern about granting a special exception for relief for a solar facility proposed on property located Southside of Westminster Pike, south of Gores Mill Rd. The hearing is scheduled for today, January 2, 2019 at 1:30. My request of postponement is because of Council Wade Kach's Dec 17, 2018 introduction of Bill No 102-18 which proposes a 9 month moratorium on the processing and approval of any petition for special exceptions for Solar Facilities in RC zones. A work session for public comment is scheduled for Jan 15th. The council's vote on Bill No 102-18 January 22, 2019. T

I respectfully request as an interested party that the hearing this afternoon on case # 0147-X be postponed until after the council vote on Jan 22nd.

A copy of the Bill 102-18 is attached.

Thank you for your consideration of my request. I can be reached at this email address or 410 320 3588.

Maribeth Diemer 10625 St Paul Ave Woodstock, MD 21163

CHECKLIST

Comment Received	<u>Departr</u>	<u>nent</u>			Support/Oppose/ Conditions/ Comments/ No Comment
11/26	DEVELOPMENT P				COMMENT
11/19	DEPS (if not received, date	e-mail sent	-		Comment
	FIRE DEPARTMEN	T			
12/5	PLANNING (if not received, date	e-mail sent	3		Comment
1117	STATE HIGHWAY	ADMINISTRA	ATION		NO Obj
	TRAFFIC ENGINE	ERING		1	
	COMMUNITY ASS	OCIATION			
	ADJACENT PROPI	ERTY OWNER	LS		-
ZONING VIOLATIO	ON (Case	No)
PRIOR ZONING	(Case	No			
NEWSPAPER ADV	ERTISEMENT	Date:	121	13/18	
SIGN POSTING (18	st)	Date:	12	13/18	by O'Keye
SIGN POSTING (2 ¹	nd)	Date:	1/1	119	by O'Keefe
PEOPLE'S COUNSEL APPEARANCE Yes No					
PEOPLE'S COUNSI	EL COMMENT LETT	TER Yes		No L	
Comments, if any:					

CASE NAME	Burns brok-
CASE NUMBER	2019-1117-
DATE	
	12/19

PETITIONER'S SIGN-IN SHEET

NAME	ADDRESS	CITY, STATE, ZIP	E - MAIL
DAUID THALER	BOX 47428	BALTIMORE MD	dethalerodethaler.com
ANDEEN BROWN !	7115 AMBASSADOR RD 2	21244-7428	abrown edsthaler. com
Spele Copus	16865 Designiff Rd Sel. 330	JEKAdge mb 21075	jack. copusa sac-pour.
Bruce Wilson	,	•	Benoz. W. Savesge - Daw
Adria Weby (adria, weber@ sgc-power.
Lestre meassick	715 Westmineter Dike	Reisters town Mblaliza	morand bood gmal.com
Murene Esten	or coco assungrow he	Reiders Dew Molaliza	15 Sundthe sgs-/a
			Ti .
			X
			•
φ.			

CASE NAME	2010	9-14	+7-	X	
CASE NUMBER			115		
DATE	-2-	2019		- 11	-

CITIZEN'S SIGN - IN SHEET

NAME	ADDRESS	CITY, STATE, ZIP E - MAIL				
Charles CIPSCOMB	12909 GORES MILL RO.	REISTERSTOWN MD 21136	CALIPS COMBE GMAIL.			
The state of the s						
alia Pala						
			X			
		Teller at each of the last				
			Barting of the second			

Debra Wiley

From: Administrative Hearings

Sent: Wednesday, January 02, 2019 12:58 PM

To: Maribeth Diemer

Subject: RE: Case Number: 2019-0147-X interested party

Ms. Diemer,

This is to acknowledge receipt of your correspondence, which has been placed in the case file for today's hearing.

Thank you for contacting the Office of Administrative Hearings.

----Original Message----

From: Maribeth Diemer [mailto:maribeth-13@att.net]

Sent: Wednesday, January 02, 2019 12:12 PM

To: Administrative Hearings <administrativehearings@baltimorecountymd.gov>

Cc: Cathy Wolfson <oakknob@comcast.net>; GPCA Communications Chair <gpca21163@gmail.com>

Subject: Case Number: 2019-0147-X interested party

To Whom It May Concern:

I am expressing my concern about granting a special exception for relief for a solar facility proposed on property located Southside of Westminster Pike, south of Gores Mill Rd. The hearing is scheduled for today, January 2, 2019 at 1:30. My request of postponement is because of Council Wade Kach's Dec 17, 2018 introduction of Bill No 102-18 which proposes a 9 month moratorium on the processing and approval of any petition for special exceptions for Solar Facilities in RC zones. A work session for public comment is scheduled for Jan 15th. The council's vote on Bill No 102-18 January 22, 2019. T

I respectfully request as an interested party that the hearing this afternoon on case # 0147-X be postponed until after the council vote on Jan 22nd.

A copy of the Bill 102-18 is attached.

Thank you for your consideration of my request. I can be reached at this email address or 410 320 3588.

Maribeth Diemer 10625 St Paul Ave Woodstock, MD 21163

Debra Wiley

15 1-2-19 (:30PM

From: Maribeth Diemer <maribeth-13@att.net>

Sent: Wednesday, January 02, 2019 12:12 PM

To: Administrative Hearings

Cc: Cathy Wolfson; GPCA Communications Chair

Subject: Case Number: 2019-0147-X interested party

To Whom It May Concern:

I am expressing my concern about granting a special exception for relief for a solar facility proposed on property located Southside of Westminster Pike, south of Gores Mill Rd. The hearing is scheduled for today, January 2, 2019 at 1:30. My request of postponement is because of Council Wade Kach's Dec 17, 2018 introduction of Bill No 102-18 which proposes a 9 month moratorium on the processing and approval of any petition for special exceptions for Solar Facilities in RC zones. A work session for public comment is scheduled for Jan 15th. The council's vote on Bill No 102-18 January 22, 2019. T

I respectfully request as an interested party that the hearing this afternoon on case # 0147-X be postponed until after the council vote on Jan 22nd.

A copy of the Bill 102-18 is attached.

Thank you for your consideration of my request. I can be reached at this email address or 410 320 3588.

Maribeth Diemer 10625 St Paul Ave Woodstock, MD 21163

RECEIVED

JAN 0 2 2018

OFFICE OF ADMINISTRATIVE HEARINGS

ASMIN SULL FREE PLANT

COUNTY COUNCIL OF BALTIMORE COUNTY, MARYLAND Legislative Session 2018, Legislative Day No. 21

Bill No. <u>102-18</u>

Mr. Wade Kach, Councilman

By the County Council, <u>December 17, 2018</u>

A BILL ENTITLED

AN ACT concerning

Solar Facilities

FOR the purpose of imposing a temporary 9-month moratorium on the processing and approval of any petition for special exceptions for solar facilities in the Resource Conservation (R.C.) Zones to allow time and consideration of recommendations from the Baltimore County Planning Board; to provide for further review and to improve the law for processing and approval of solar facilities; and generally relating to solar facilities.

WHEREAS, the Baltimore County Council enacted legislation (Bill 37-17) to allow industrial and commercial solar facilities in designated R.C, business, and manufacturing zones by special exception; and

EXPLANATION:

CAPITALS INDICATE MATTER ADDED TO EXISTING LAW.

[Brackets] indicate matter stricken from existing law.

Strike out indicates matter stricken from bill.

Underlining indicates amendments to bill.

WHEREAS, the legislative purpose of Bill 37-17 was to balance the benefits of solar energy with safeguards to protect the County's communities, agricultural land, forests, waterways, and other natural resources; and

WHEREAS, Bill 37-17 also called for the Baltimore County Planning Board to submit recommendations to the County Council and the County Executive regarding potential changes to current law; and

WHEREAS, the Baltimore County Planning Board submitted the following recommendations:

- Solar facilities should not be permitted on prime and productive soils;
- Solar facilities should be directed into business and manufacturing zones, brownfields, rooftops and parking lots where financially feasible;
- Further in-depth study of how other similar jurisdictions have responded to the use should be considered in a review of the current law;
- The feasibility of establishing locational criteria to determine appropriate siting of solar facilities should be investigated;
- Solar facilities should not be detrimental to scenic views or routes;
- Participation in future studies should be broadened to include stakeholders from each Councilmanic District; and

WHEREAS, the Baltimore County and Maryland farm bureaus have adopted policies opposing the use of prime and productive soils for solar arrays as well as using the term "solar farms;" and

WHEREAS, all of the petitions for proposed solar facilities pursuant to Bill 37-17 have thus far been on properties located in R.C. Zones, and mostly on prime and productive soils and along scenic roads or views; and

WHEREAS, there has been extensive community opposition to industrial and commercial solar facilities on prime and productive soils, and significant concern has been expressed about

potentially displacing industrial uses and jobs; and

WHEREAS, there are tremendous opportunities for co-locating solar facilities and adding value to contaminated and underutilized lands through smart solar siting and incentives; and

WHEREAS, there is growing consensus that the impacts of population growth will require prime and productive farm land to be more productive than it currently is in order to meet the needs of future generations; and

WHEREAS, as recognized by the United States Supreme Court in the 2002 case of *Tahoe-Sierra Preservation Council v. Tahoe Regional Planning Agency*, temporary moratoriums are a common and valid tool throughout the country and are imposed during the review and revision of comprehensive land use plans to maintain the status quo while land use patterns are analyzed; and

WHEREAS, solar companies were involved in the legislative hearings on Bill 37-17 and were aware that the regulations were to be studied and that recommendations for regulation changes were expected by July 1, 2018; and

WHEREAS, the new County administration has identified the need to address climate change issues in a holistic manner, including a transition to 100% renewable energy, in order to assure Baltimore County is resilient in the face of emerging environmental challenges and weather patterns and is prepared to meet established goals to improve waterways and the Chesapeake Bay; and

WHEREAS, the State of Maryland has identified eligible facilities for inclusion in the Renewable Portfolio Standard (RPS) that include:

- Solar photovoltaic (PV) and thermal systems that produce electric power, and solar water-heating systems constructed after June 1, 2011;
- Land-based and offshore wind;
- Qualifying biomass;
- Methane from the anaerobic decomposition of organic materials in a landfill or a wastewater treatment plant;

- Geothermal including energy generated through geothermal exchange from or thermal energy avoided by groundwater or a shallow ground source;
- Ocean including energy from waves, tides, currents, and thermal differences;
- Fuel cells powered by methane or biomass;
- Hydroelectric plants under 30 MW licensed by FEREC or exempt from licensing;
- · Poultry litter-to-energy within Maryland;

2

3

4

- Waste-to-energy (including blast furnace and refuse-derived fuels) within Maryland;
- Hydroelectric plants other than pumped storage hydropower; and

WHEREAS, energy conservation is an important component of energy policy and sustainability; and

WHEREAS, the 2030 Master Plan to be adopted in 2020 will likely benefit from the additional study and review contemplated by this Act, and will require new elements and data to address renewable energy and other new uses and environmental issues; and

WHEREAS, renewable energy must also be compatible with other demands on natural resources including forests, prime and productive soils, streams, wetlands, and clean air; and

WHEREAS, Baltimore County has abundant natural resources that can be utilized to create a sustainable future with a healthy environment and economy; and

WHEREAS, a comprehensive study to identify existing renewable resources, and utilize new and existing resources in the most effective, equitable and efficient way is needed to assure long-term benefits for county residents; now, therefore

1 SECTION 1. BE IT ENACTED BY THE COUNTY COUNCIL OF BALTIMORE

COUNTY, MARYLAND, that there shall be a temporary 9-month moratorium on petitions for

special exceptions for solar facilities in the Resource Conservation (R.C.) Zones. This

moratorium shall halt, for nine (9) months from the effective date of this Act, the filing of any new

5 petitions for special exception for a proposed solar facility and the processing and approval of any

pending petitions for solar facilities in R.C. Zones at any stage of the approval process.

SECTION 2. AND BE IT FURTHER ENACTED, that the Planning Board shall, in consultation with the Departments of Planning and Environmental Protection and Sustainability, the participation of the Baltimore County Advisory Commission on Environmental Quality, a representative of community groups from each Council district, and a representative from the renewable energy industry, conduct a comprehensive study regarding siting of solar facilities in R.C. Zones, and shall by August 31, 2019 present the results of the study and recommendations to the County Council and the County Executive. The results of this study shall provide information necessary to establish a goal to meet the optimal percentage of County energy needs with renewable energy in order to ensure an aggressive but practical timeline, smart facility siting, social justice, maximization of job creation, and best integration with the power grid and existing energy facilities, while at the same time fulfilling the important legislative purpose to balance the protection of communities, agricultural land, and the environment generally.

SECTION 3. AND BE IT FURTHER ENACTED, that this Act, having been passed by the affirmative vote of five members of the County Council, shall take effect on February 4, 2019, and this 9-month moratorium shall apply retroactively to all petitions for special exceptions filed for solar facilities in the Resource Conservation (R.C.) Zones at any stage of the approval process, including petitions pending at the Office of Administrative Hearings or the Board of Appeals on appeal.

Debra Wiley

B 1-2-191 1:30 PM

From:

Linda Okeefe < luckylinda 1954@yahoo.com>

Sent:

Tuesday, January 01, 2019 11:38 PM

To:

Administrative Hearings

Subject:

Westminster Pike Cert. Case # 2019-0147-X

Attachments:

Westminster Pike 2nd Cert...jpeg; Photo Westminster Pike.docx

Hi Sherry,

I have attached a copy of the Second Certification for Case # 2019-0147-X @ 715 Westminster Pike for your records.
Happy New Year!

Linda

Linda O'Keefe 523 Penny Lane Hunt Valley MD 21030 Phone # 410-666-5366 Cell# 443-604-6431 Fax# 410-666-0929 luckylinda1954@yahoo.com RECEIVED

JAN 0 2 2018

OFFICE OF ADMINISTRATIVE HEARINGS

SECOND CERTIFICATE OF POSTING

ATTENTION: SHERRY NUFFER

DATE: 1//1/2019

Case Number: 2019-0147-X

Petitioner / Developer: LAWRENCE SCHMIDT, ESQ. ~ BRUCE WILSON

ELAINE OUSLER BURNS

Date of Hearing: JANUARY 2, 2019

This is to certify under the penalties of perjury that the necessary sign(s) required by law were posted conspicuously on the property located at: 715 WESTMINSTER PIKE

The sign(s) were posted on: DECEMBER 13, 2018

The sign(s) were re-photographed on: JANUARY 1, 2019

Lynda O Keefe
(Signature of Sign Poster)

Linda O'Keefe

(Printed Name of Sign Poster)

523 Penny Lane

(Street Address of Sign Poster)

Hunt Valley, Maryland 21030

(City, State, Zip of Sign Poster)

410 - 666 - 5366

(Telephone Number of Sign Poster)

RECEIVED

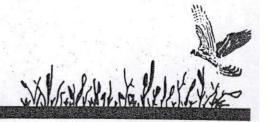
JAN 0 2 2018

OFFICE OF ADMINISTRATIVE HEARINGS

2nd Sign re-photographed 1/1/2019 @ 715 Westminster Pike CASE # 2019-0147-X

RECEIVED

JAN 0 2 2018


OFFICE OF ADMINISTRATIVE HEARINGS

Real Property Data Search

Search Result for BALTIMORE COUNTY

View Map	View GroundRent Rec	lemption			View Gro	oundRent Registr	ation
Tax Exempt:	Special	Tax Recap	ture:			<u> </u>	
Exempt Class:	AGRICU	JLTURAL TI	RANSFER TAX				
Account identifier:	District - 04 Accou	nt Number	- 0415077025				
		Ov	vner Information				
Owner Name:	BURNS ELAINE O		Use: Principal	Residence:	AGRICULTUI YES	RAL	
Mailing Address:	715 WESTMINSTE REISTERSTOWN	523	Deed Refe	erence:	/31741/ 00192	?	
			& Structure Inform	ation		,	
Premises Address:	715 WESTMINSTE 0-0000	R PIKE		Legal Des	cription:	49.133 AC 715 WESTMII NOB HILL PA	NSTER PK SS RK DR
Map: Grid: Parcel: 0048 0002 0378	Sub District: Subd	ivision:	Section:	Block:	Lot: Asse 2019	ssment Year:	Plat No: Plat Ref:
Special Tax Areas:			Town: Ad Valorem: Tax Class:			NONE	
Primary Structure Built 1943	Above Grade Living Area 2,520 SF	······································	Finished Basem 300 SF	ent Area	Property 49,1300	/ Land Area AC	County Use 05
Stories Basement 2 1/2 YES	Type STANDARD UNIT	Exterior STONE	Full/Half 2 full/ 1 h		Garage 1 Attached	Last Major F	Renovation
-	•	Va	alue Information				
	Base Value	_	Value		Phase-in Asses	saments	
			As.of 01/01/2016		As of 07/01/2018	Aso	of 11/2019
Land:	110,400		110,400				
Improvements	239,600		239,600				
Total:	350,000		350,000		350,000		
Preferential Land:	12,900						
		Tra	nsfer information				
Seller: BURNS ELAINE OURSLE	R	Date: 03	1/19/2008			Price: S	50
Type: NON-ARMS LENGTH OTH	IER .	Deed1:	/31741/ 00192			Deed2:	
Seller: OURSLER MARY ELIZAB	ETH	Date: 07	//25/2002			Price: 5	60
Type: NON-ARMS LENGTH OTH	•		/12408/ 00245			Deed2:	<i>-</i>
Seller: OURSLER GEORGE A		Date: 09	/29/1997			Price: S	<u> </u>
Type: NON-ARMS LENGTH OTH	ER		/12408/ 00245			Deed2:	
			nption Information	<u> </u>			
Partial Exempt Assessments:	Class			07/01/201	8	07/01/2019	
County:	000			0.00			
State:	000			0.00			
Municipal:	000			0.00		0.00]	
Tax Exempt:	Special	Tax Recap	ture:				
Exempt Class:	AGRICU	JLTURAL TI	RANSFER TAX				
		Homestead	Application Infor	mation			
Homestead Application Status: D	enled						
	Home	owners' Tax	Credit Applicatio	n Informatio	ก _		
Homeowners' Tax Credit Applicat	Anna Change and American Manager			Date:	-		

Eco-Science Professionals, Inc.

CONSULTING ECOLOGISTS

December 28, 2018

Mr. Glenn Shaffer
Baltimore County Department of Environmental Protection
and Sustainability
111 W. Chesapeake Avenue, Room 319
Towson, MD 21204

RE: 715 Westminster Pike Property - Reisterstown

Dear Glenn,

Enclosed find the following items for the referenced project:

- A. One (1) Wetland Delineation and Steep Slopes/Erodible Soils Analysis Report
- B. One (1) Simplified Forest Stand Delineation letter

I would appreciate if you would assign these to the appropriate EIR staff person for review and comment.

Please feel free to call me if you have any questions.

Sincerely,

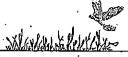
Henry A. Leskinen

Enclosures

cc: Ms. Stacy McArthur, D.S. Thaler & Associates Mr. Larry Schmidt, Smith, Gildea & Schmidt

Eco-Science Professionals, Inc.

CONSULTING ECOLOGISTS


December 27, 2018

Mr. Glenn Shaffer
Baltimore County Department of Environmental Protection
and Sustainability
111 W. Chesapeake Avenue, Room 319
Towson, MD 21204

RE: 715 Westminster Pike Property - Reisterstown, Baltimore County, Maryland Simplified Forest Stand Delineation

Dear Glenn,

Eco-Science Professionals, Inc. performed a natural resources assessment of the project site on December 4, 2018. The property includes approximately 47.6 acres and is located on the southwest side of Westminster Pike (U.S. Route 140), approximately 0,25 miles southeast of the intersection of Gores Mills Road, in the Reisterstown section of Baltimore County, Maryland. The site has been previously improved with a two-story single family home and numerous outbuildings which are located on the north-central portion of the site. The area immediately around the house is fenced and maintained as lawn with scattered trees. Twelve (12) specimen trees are present in this fenced lawn. A list of these trees is attached to this letter. The far northern portion of the property consist of meadow/old field which is periodically mowed. Dominant vegetation in this meadow includes Kentucky fescue (Schedonorus arundinaceus), orchard grass (Dactylis glomerata), sweet vernal grass (Anthoxantum odoratum), perennial ryegrass (Lolium perenne), and various wildflower and weed species. The central portion of the property (south of the house) is maintained as a hayfield. Dominant vegetation in this hayfield includes Kentucky fescue, orchard grass, broomsedge (Andropogon virginicus), purpletop grass (Triodea flavus), white clover (Trifolium repens), and narrow-leaved plantain (Plantago lanceolata). Hedgerows border this hayfield and are dominated by black cherry (Prunus serotina), sour cherry (Prunus cerasus), sassafras (Sassafras albidum), common mulberry (Morus rubra), autumn olive (Elaeagnus umbellata), bush honevsuckle (Lonicera tatarica), multiflora rose (Rosa multiflora), blackberry (Rubus allegheniensis), bittersweet vine (Celastrus orbiculatus), and grape (Vitis sp.). The southern end of the site is forested and contains two forest associations. A mid-age mixed oak-poplar association dominated by chestnut oak (Quercus prinus), white oak (Quercus alba), tulip poplar (Liriodendron tulipifera), red oak (Quercus rubra), mockernut (Carya tomentosa), red maple (Acer rubrum), and black gum (Nyssa sylvatica) is present on gentle to steep north facing slopes south of the perennial stream. A mixed mesic forest dominated by red maple, black walnut (Juglans nigra), black cherry, tulip poplar, spicebush (Lindera benzoin), multiflora rose, and Japanese barberry (Berberis thunbergii) is present on the mesic stream terrace. The stream is a headwater to Keysers Run. Keysers Run and its tributaries are classified as Use III-P by the Maryland Department of the Environment (MDE). Waters with this use

classification are capable of supporting natural trout populations and are part of a public water supply. Pockets of adjacent wetlands are present along the stream. These wetlands are described in the accompanying report entitled 715 Westminster Pike - Wetland Delineation Report and Steep Slopes/Erodible Soils Analysis.

The Natural Resources Conservation Service (NRCS) Web Soil Survey of Baltimore County. Maryland shows soils on the project site to be Elioak silt loam, 3-8 percent slopes (EcB); Gaila loam, 3-8 percent slopes (GaB), Glenelg loam, 3-8 percent slopes (GdB); Glenville silt loam, 3-8 percent slopes (GhB); Glenville silt loam, 8-15 percent slopes (GhC); Hatboro silt loams, 0-3 percent slopes (HbA); Manor loam, 8-15 percent slopes (MaC); Manor channery loam, 8-15 percent slopes (MbC); and Manor channery loam, 15-25 percent slopes (MbD). Elioak, Gaila, Glenelg, and Manor soils are well drained soils on uplands of the Piedmont Plateau. These soils are suitable for most uses, except where limited by slope and stoniness (mainly in the Manor soils). Glenville soils are moderately well drained soils of swales and drainageways. A seasonally perched water table to within 20-40 inches of the soil surface somewhat limits these soils for nonfarm uses. Hatboro soils are poorly drained soils on floodplains of the Piedmont Plateau. A high groundwater table to within 0-6 inches of the soil surface and the threat of frequent flooding and ponding severely limit these soils for nonfarm uses. Hatboro soils are identified as a hydric soil by the NRCS and Glenville soils have the potential for hydric Baile inclusions. Elioak silt loam, 3-8 percent slopes; Gaila loam, 3-8 percent slopes, Glenelg loam, 3-8 percent slopes, and Glenville silt loam, 3-8 percent slopes are identified as Prime Farmland by the NRCS. Glenville silt loam, 8-15 percent slopes; Manor loam, 8-15 percent slopes; and Manor channery loam, 8-15 percent slopes are identified as Farmland of Statewide Importance by the NRCS.

I have reviewed the proposed site development plan and have determined that no forest or specimen trees will be disturbed. Therefore the project should qualify for a Simplified Forest Stand Delineation as outlined in Policy 01-93. All natural resource elements are shown on the Wetland Delineation and Simplified Forest Stand Delineation Plan enclosed in the accompanying Wetland Delineation Report.

Please feel free to call me if you have any questions regarding these findings. I thank you in advance for your prompt review of these findings.

Sincerely,

Henry A. Leskinen

Enclosures

Specimen Trees

Key	· Species Name	Size	CRZ	Cond.
Α	Red oak	37"	55 <i>.</i> 5'	Good
В	Tulip poplar	39"_	58.5'	Fair
С	Scarlet oak	44"	66'	Good
ם	Sweetgum	36"	54'	F. good
E	White pine	32"	46'	Good
F	White pine	37"	55.5'	Good
· G	American beech	58"	87'	Fair
Н	American beech	46"	69'	Fair
L I	Scarlet oak	46"	69'	V.poor
J	White pine	33.5"	50'	Good
К	White pine	59"	88.5'	Good
L	Norway maple	34"	51'	Poor

715 WESTMINSTER PIKE PROPERTY

WETLAND DELINEATION REPORT and STEEP SLOPES/ERODIBLE SOILS ANALYSIS

prepared for:

D.S. Thaler & Assoc., LLC. 7115 Ambassador Road Baltimore, Maryland 21244

prepared by:

Eco-Science Professionals, Inc. P.O. Box 5006 Glen Arm, Maryland 21057 (410) 683-7840

Table of Contents

		Page
I.	INTRODUCTION	1
II.	SITE DESCRIPTION	1
Ш.	WETLAND DELINEATION	2
	Methods Weather Conditions Results	·
IV	STEEP SLOPES/ERODIBLE SOILS ANALYSIS	3
v.	RECOMMENDATIONS	5
VI.	AUTHORSHIP	. 5
VII.	LITERATURE CITED	6
VIII.	APPENDICES	
	 A. Wetland Data Sheets B. Steep Slopes Worksheets and SSA Workmap C. USACOE Wetland Certification D. Wetland and Simplified Forest Stand Delineation Plan 	

I. INTRODUCTION

Eco-Science Professionals, Inc. was contracted by D.S. Thaler & Assoc., LLC to perform a Wetland Delineation and Steep Slopes/Erodible Soils Analysis of the 715 Westminster Pike Property. The property includes approximately 47.6 acres and is located, as the name indicates, at 715 Westminster Pike in the Reisterstown section of Baltimore County, Maryland. The study was performed as part of an effort to assess the regulated natural resources on the property.

II. SITE DESCRIPTION

The project site is located on the southwest side of Westminster Pike, approximately 0.25 miles southeast of the intersection of Gores Mills Road, in the Reisterstown section of Baltimore County, Maryland. Surrounding land uses include low to medium density residential development, forested land, and a landscaping operation.

The site is located in the Piedmont physiographic province of Maryland. In Baltimore County, the Piedmont is typified by rolling hills drained by numerous small streams in fairly narrow valleys.

The site has been previously improved with a two-story single family home and numerous outbuildings which are located on the north-central portion of the site. The area immediately around the house is maintained as fenced lawn with scattered trees. The far northern portion of the property consist of meadow/old field which is periodically mowed. Dominant vegetation in this meadow includes Kentucky fescue (Schedonorus arundinaceus), orchard grass (Dactylis glomerata), sweet vernal grass (Anthoxantum odoratum), perennial ryegrass (Lolium perenne), and various wildflower and weed species. The central portion of the property (south of the house) is maintained as a hayfield. Dominant vegetation in this hayfield includes Kentucky fescue, orchard grass, broomsedge (Andropogon virginicus), purpletop grass (Triodea flavus), white clover (Trifolium repens), and narrow-leaved plantain (Plantago lanceolata). Hedgerows border this hayfield and are dominated by black cherry (Prunus serotina), sour cherry (Prunus cerasus), sassafras (Sassafras albidum), common mulberry (Morus rubra), autumn olive (Elaeagnus umbellata), bush honeysuckle (Lonicera tatarica), multiflora rose (Rosa multiflora), blackberry (Rubus allegheniensis), bittersweet vine (Celastrus orbiculatus), and grape (Vitis sp.). The southern end of the site is forested and contains two forest associations. A mid-age mixed oak-poplar association dominated by chestnut oak (Quercus prinus), white oak (Quercus alba), tulip poplar (Liriodendron tulipifera), red oak (Quercus rubra), mockernut (Carya tomentosa), red maple (Acer rubrum), and black gum (Nyssa sylvatica) is present on gentle to steep north facing slopes south of the perennial stream. A mixed mesic forest dominated by red maple, black walnut (Juglans nigra), black cherry, tulip poplar, spicebush (Lindera benzoin), multiflora rose, and Japanese barberry (Berberis thunbergii) is present on the mesic stream terrace. The stream is a headwater to Keysers Run. Keysers Run and its tributaries are classified as Use III-P by the Maryland Department of the Environment (MDE). Waters with this use classification are capable of supporting natural trout populations and are part of a public water supply. Pockets of adjacent wetlands are present along the stream. These wetlands are described

Eco-Science Professionals, Inc.

further in Section III. A Baltimore Gas and Electric Company transmission line bisects the southern end of the site.

The Natural Resources Conservation Service (NRCS) Web Soil Survey of Baltimore County, Maryland shows soils on the project site to be Elioak silt loam, 3-8 percent slopes (EcB); Gaila loam, 3-8 percent slopes (GaB), Glenelg loam, 3-8 percent slopes (GdB); Glenville silt loam, 3-8 percent slopes (GhB); Glenville silt loam, 8-15 percent slopes (GhC); Hatboro silt loams, 0-3 percent slopes (HbA); Manor loam, 8-15 percent slopes (MaC); Manor channery loam, 8-15 percent slopes (MbC); and Manor channery loam, 15-25 percent slopes (MbD). Elioak, Gaila, Glenelg, and Manor soils are well drained soils on uplands of the Piedmont Plateau. These soils are suitable for most uses, except where limited by slope and stoniness (mainly in the Manor soils). Glenville soils are moderately well drained soils of swales and drainageways. A seasonally perched water table to within 20-40 inches of the soil surface somewhat limits these soils for nonfarm uses. Hatboro soils are poorly drained soils on floodplains of the Piedmont Plateau. A high groundwater table to within 0-6 inches of the soil surface and the threat of frequent flooding and ponding severely limit these soils for nonfarm uses. Hatboro soils are identified as a hydric soil by the NRCS and Glenville soils have the potential for hydric Baile inclusions. Elioak silt loam, 3-8 percent slopes; Gaila loam, 3-8 percent slopes, Glenelg loam, 3-8 percent slopes, and Glenville silt loam, 3-8 percent slopes are identified as Prime Farmland by the NRCS. Glenville silt loam, 8-15 percent slopes; Manor loam, 8-15 percent slopes; and Manor channery loam, 8-15 percent slopes are identified as Farmland of Statewide Importance by the NRCS. Soil types are shown on the enclosed Wetland and Simplified Forest Stand Delineation Plan (Appendix D).

III. WETLAND DELINEATION

Methods

The wetland delineation of the 715 Westminster Pike Property was performed on December 4, 2018. The criteria outlined in the U.S. Army Corps of Engineers 1987 Wetland Delineation Manual and 2012 Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region were used to determine the extent of non-tidal wetlands on the property. The wetland delineation was limited to the portion of the property on the north side of the stream channel. All of the property to the south of this stream will be placed in a forest buffer and/or forest conservation easement. All personnel making wetland boundary determinations have been certified by the USACOE Provisional Wetland Delineators Certification Program. Documentation of certification can be found in Appendix C.

Weather conditions

The weather on the day of the field visit was partly sunny and breezy, with a temperature of about 42 degrees. The area had received moderately heavy rainfall in the 48 hours preceding my site and annual rainfall to date was 26 inches ± above normal.

Results

The headwaters to Keysers Run cross the south-central portion of the project site. The stream occurs within a well defined channel with a cobble/gravel substrate. The Cowardin classification of this stream is R3UB1- riverine, upper perennial, unconsolidated bottom, cobble/gravel.

An emergent wetland, identified as System B, is present in the lower portion of the hayfield along the stream terrace. Dominant vegetation in this wetland includes many-flowered bulrush (Scirpus polyphyllus), a sedge (Carex sp.), Kentucky fescue, broomsedge, and soft rush (Juncus effusus). Soil borings in the wetland reveal a soil matrix color in the upper six inches of 10YR 5/1, with mottles 7.5YR 5/6, when compared to the Munsell soil color charts. Texture of the soil is a silt loam. Below six inches, matrix color brightens to 2.5Y 5/3, with mottles 7.5YR 5/6. Hydrologic indicators some soil saturation (in the upper two inches) and some surface seepage. Hydrology in this wetland is probably much less evident in a normal precipitation year. The Cowardin classification of this wetland is PEM1C - palustrine, emergent, persistent, seasonal water regime.

A pocket of forested wetlands is adjacent to the stream, near Flags 27-28A. Dominant vegetation in this wetland includes red maple, multiflora rose, Japanese stiltgrass (*Microstegium vimineus*), jewelweed (*Impatiens capensis*), and rough bluegrass (*Poa trivialis*). Soil borings in the wetland reveal a soil matrix color in the upper five inches of 2.5Y 5/2, with mottles 10YR 5/6, when compared to the Munsell soil color charts. Texture of the soil is a silt loam. Below five inches, soil matrix color brightens to 10YR 5/6, with texture being a clayey silt loam. Hydrologic indicators include pockets of standing water to 2/10 of an inch and water-stained leaves. The soil indicators suggest that hydrology is the result of perched surface water. The Cowardin classification of this wetland is PFO6C - palustrine, forested, deciduous, seasonal water regime.

A very seasonal emergent wetland (System C) has developed in a grass swale in the hayfield. Vegetation in this wetland is weakly hydrophytic, with rough bluegrass and Kentucky fescue being the two dominant species. Soil borings also suggest the very seasonal nature of the wetland, with borings to seven inches revealing a soil matrix color of 2.5Y 5/2, with faint mottles 7.5YR 5/6, when compared to the Munsell soil color charts. Texture of the soil is a clayey silt loam. Below seven inches, soil matrix color brightens to 2.5Y 5/3, with mottles 10YR 5/6. Hydrologic indicators include surface seepage and drainage patterns. Soils are not saturated, again suggesting that hydrology is a result of perched surface water over clayey soils. Visible surface hydrology is probably very limited during normal precipitation years. Hydrophytic vegetation, hydric soil field indicators, and evidence of hydrology all disappear downslope of the wetland. The Cowardin classification of this wetland is PEM1A - palustrine, emergent, persistent, temporary water regime.

The locations of the wetlands and stream are shown on the enclosed plan. Data sheets for the wetlands are included in Appendix A.

IV. STEEP SLOPES/ERODIBLE SOILS ANALYSIS

<u>Methods</u>

The project site meets the criteria for sites requiring a steep slopes/erodible soils analysis (SSA). The SSA is performed to determine the need for expanded forest buffers due to the presence of steep slopes and/or highly erodible soils. This analysis was performed in accordance with the procedures outlined in A Methodology of Evaluating Steep Slopes and Erodible Soils Adjacent to Watercourses and Wetlands, prepared by the Baltimore County Department of Environmental Protection and Sustainability (DEPS), January 1991, 3rd Revision June 2011.

<u>Results</u>

The slope analysis forms and accompanying work map (Appendix B) detail the segment scores and calculations used to determine the extent of the forest buffer. The analysis determined that the buffer will be 100 feet in width, either in plan view or along the transect line, from the stream and wetland. A general lack of slopes greater than 20 percent on the north side of the stream, good vegetative cover, and the presence of moderately erodible Gaila, Glenelg, and Manor soils limit the extent of the buffer. The exception to the 100 foot buffer width is along portions of System B, where contours run perpendicular to wetland and prevent a flow path to the wetland, and downslope of System C, where no flow reaches the wetland. In these areas the standard 25 foot wetland buffer is applied.

Below find a summary of each transect.

Property line to Transect A - buffer is 100 feet in width due to good vegetative cover and lack of slopes 20 percent and greater

Transect A - segment scores 40 at 100 feet from resource, buffer set at this point.

Area between Transects A and B - buffer remains 100 feet in width.

Transect B - segment scores 40 at 100 feet from resource, buffer set at this point.

Area between Transect B and C - buffer remains 100 feet in width, except at northwest corner of System B, where perpendicular contours allow for the standard 25-foot wetland buffer near the corner of the wetland.

Transect C - segment scores 40 at 100 feet from resource, buffer set at this point.

Area between Transects C and D - buffer remains 100 feet in width.

Transect D - segment scores 40 at 100 feet from resource, buffer set at this point.

Area between Transect D and property line - buffer remains 100 feet in width due to good vegetative cover and lack of steep slopes.

Transect E - segment scores 40 at 100 feet from resource along transect line, buffer set at this point.

Area between Transects E and F - buffer remains 100 feet in width along transect line.

Transect F - segment scores 45 at 100 feet from resource, buffer set at this point.

Area between Transects F and G - buffer remains 100 feet in width along transect line.

Transect G - segment scores 45 at 100 feet from resource along transect line, buffer set at this point

Area between Transect G and bottom of wetland - buffer remains 100 feet in width along transect line to the point where contours drain downslope and below wetland. At this point, standard 25-foot wetland buffer is applied.

V. RECOMMENDATIONS

A headwater to Keysers Run, associated wetlands and a disjunct emergent wetland are present on the south and east-central portion of the project sites. There should be no impacts to this these resources or associated forest buffers based on my understanding of the proposed site development proposal. No permits from the USACOE or MDE and no environmental variances from Baltimore County will be required.

VI. AUTHORSHIP

This wetland study was performed by Henry Leskinen. Co-founder of Eco-Science Professionals, Inc. Mr. Leskinen has extensive experience in natural resources assessments and inventories. He received his B.S. in Biological Sciences from St. Marys College of Maryland in St. Marys City, Maryland. Mr. Leskinen has received his Provisional Wetland Certification from the U.S. Army Corps of Engineers, Baltimore District.

VII. LITERATURE CITED

- Cowardin, Lewis et.al. Classification of Wetlands and Deepwater Habitats of the United States. U.S. Dept. of Interior, Fish and Wildlife Service, Washington, D.C. FWS/OBS-79/31. December, 1979.
- Environmental Laboratory. 1987. Corps of Engineers Wetland Delineation Manual, Technical Report Y-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
- U.S. Army Corps of Engineers 2017. Eastern Mountains and Piedmont 2017 Regional Wetland Plant List.
- U.S. Army Corps of Engineers. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region. U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi. 2012
- U.S. Department of Agriculture, Natural Resources Conservation Service. Web Soil Survey of Baltimore County, Maryland. December 2018

Wetland Field Data Sheets

Eco-Science Professionals, Inc.

WETLAND DETERMINATION DATA FORM - Eastern Mountains and Piedmont IS Westmaster P. Le City/County: Restantion Basting Sampling Date: State: MD Sampling F

Project/Site: 715 Westminster P. Le		_ City/Co	unty: <u>Re rst</u>	extrum Basting Sampling Date: 121417
Applicant/Owner: 56C				State: MD Sampling Point: BCI-I
Investigator(s): H- Leskings		Section	, Township, R	lange:(
				ef (concave, convex, none): _concave(slightly)
Slope (%): 2-5% Lat:		Long:	_	Datum
Soil Map Unit Name: Olenville : 11 loam, 3	-20/nelones.	พพก		NWI classification: MA
Are climatic / hydrologic conditions on the site typical f				
Are Vegetation N, Soil N, or Hydrology	significanti	e disturba		
Are Vegetation N Soil N or Hydrology				"Normal Circumstances" present? Yes 🗻 No
			-	needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site m	nap showing	g samp	ling point	locations, transects, important features, etc
Hydrophytic Vegetation Present? Yes 🗶	_ No	ľ.		
Hydric Soil Present? Yes X	_ No	1 12	s the Sample rithin a Wetla	
Wetland Hydrology Present? Yes	_ No	"		• • • • • • • • • • • • • • • • • • • •
Remarks: * Rounfall Yeurtudate about 2 - Emerget wetbed along otrasm terra	binches loring use at the second	oughly to	0%)above hayfield	Coverage
VEGETATION – Use scientific names of p	lants.			
Total Chapters (Dish areas and Title)	Absolute	Domina	ant Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: we fine)	<u>%</u> Cover	Species	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC:(A)
2	<u> </u>			Total Number of Dominant
3			<u></u>	Species Across All Strata: (B)
4. 5				Percent of Dominant Species
<u> </u>		= Total C	20105	That Are OBL, FACW, or FAC: (A/B)
Sapling/Shrub Stratum (Plot size: watton))· ———	- Iolai C	MAGI	Prevalence Index worksheet:
1				Total % Cover of: Multiply by:
2. <u> </u>				OBL species x1 =
3				FACW species x2=
				FAC species x3 =
5;			-	FACU species x4 =
<u>Herb Stratum</u> (Plot size: Western)		= Total C	over.	UPL species x 5 =
1. Exercis Delystyles	40	y	aRi	Column Totals: (A) (B)
2. Carer so	20		<u>OBL</u> FALF	Prevalence Index = B/A =
3. 9 checknows a rundinarius			FRU	Hydrophytic Vegetation Indicators:
1. Andropayon Virginies	9	N	FACO	Rapid Test for Hydrophytic Vegetation
5. Juneus etture		N	OB	★ Dominance Test is >50%
S				Prevalence Index is ≤3.0¹
7				Morphological Adaptations¹ (Provide supporting
3				data in Remarks or on a separate sheet)
);	•			Problematic Hydrophytic Vegetation (Explain)
0				Hadinton of haden and the second
Voody Vine Stratum (Plot size:	q ;	= Total Co	over	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
				Hydrophytic
<u>.</u>			1	Vegetation
·				
Remarks: (Include photo numbers here or on a separal		Total Co		Present? Yes X No

(inches)	Matrix Color (moist)	 -	Redox Color (moist)	Features %	Type ¹	Loc²	Texture	Remarks
0-6	10 YR 5/1		3.5785/b				s i Hlaim	Kemarks
	2.57 513	7.5	,			<u> </u>		
<u>lo-10</u>		<u>_60</u> _	7.540516	<u> </u>		<u> </u>	\$1 Hloam	
ydric Soil I _ Histosol _ Histic Ep _ Black His _ Hydrogei	(A1) ipedon (A2) stic (A3) n Sulfide (A4)	etion, RM=F	Dark Surface (Polyvalue Beld Thin Dark Surf Loamy Gleyed	S7) ow Surface face (S9) Matrix (F	e (S8) (M (MLRA 1	LRA 147,	Indicators for 2 cm Muck 148) Piedmont I (MLRA Red Paren	L=Pore Lining, M=Matrix. Problematic Hydric Solfs ³ : (A10) (MLRA 147) Floodplain Solfs (F19) 136, 147) t Material (TF2)
_ 2 cm Muc _ Depleted _ Thick Da _ Sandy M _ MLRA _ Sandy Gl _ Sandy Re	Layers (A5) ck (A10) (LRR N) Below Dark Surface rk Surface (A12) ucky Mineral (S1) (L. 147, 148) leyed Matrix (S4) edox (S5) Matrix (S6)	•	Depleted Matri Redox Dark St Depleted Dark Redox Depres Iron-Manganes MLRA 136) Umbric Surface Piedmont Floo	urface (F6 Surface (sions (F8) se Masses (F13) (N	(F7)) s (F12) (L //LRA 138	5, 122)	Other (Exp ³ Indicators of wetland hy	ow Dark Surface (TF12) lain in Remarks) hydrophytic vegetation and drology must be present, urbed or problematic.
Type: Depth (inclemarks:	hes):						 Hydric Soil Present1	Yes 🔏 No
mpol oc								
/DROLOG	SY rology Indicators:	· · · · · · · · · · · · · · · · · · ·					Secondary Indicat	ors (minimum of two require
Vetland Hydrimary Indica Surface V High Wat Saturation Water Ma Sediment Drift Depo Algal Mat Iron Depo Inundation Water-Sta	rology Indicators: ators (minimum of on Vater (A1) er Table (A2) n (A3) arks (B1) t Deposits (B2) osits (B3) or Crust (B4) osits (B5) n Visible on Aerial Im ained Leaves (B9) auna (B13)		t; check all that appl True Aquation Hydrogen Some Oxidized Rhome Presence of Recent Iron Thin Muck Some Other (Explain	Plants (Fulfide Odd izosphere Reduced Reduction urface (C	or (C1) es on Livid Tron (C4) n in Tilled)	Surface Soil 0 Sparsely Veg To Drainage Pat Dry-Season N Crayfish Burr Saturation Vis Stunted or St Geomorphic I Shallow Aquit	etated Concave Surface (Batems (B10)) nes (B16) Vater Table (C2) ows (C8) sible on Aerial Imagery (C9) ressed Plants (D1) Position (D2) tard (D3) phic Relief (D4)

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont

olicant/Owner: <u>5GC</u> estigator(s): <u>H-Leskinin</u>				State: MD Sampling Point: C4
				f (concave, convex, none):
•				Datum:
				NWI classification:
re climatic / hydrologic conditions on the site typical for t				
				•
re Vegetation No. Soil No. or Hydrology No.	-			"Normal Circumstances" present? Yes A No
e Vegetation N., Soil N., or Hydrology N.				eeded, explain any answers in Remarks.)
UMMARY OF FINDINGS – Attach site map	showing	g sam	pling point l	locations, transects, important features, etc
Hydrophytic Vegetation Present? Yes X	No-	ľ		
Hydric Soil Present? Yes 💢			Is the Sampled within a Wetlan	
Vetland Hydrology Present? Yes 🔀		1	Willia a trena	165_ X 10
Remarks: * Precipitation % 70% above norm	alforyea	^		,
very seasons) emergent wetland with	n walk i	n hay	field. Allw	etland characteratics disappeardainelage of
n'etland				
EGETATION – Use scientific names of pla	nts.			
ree Stratum (Plot size: Withou)	Absolute % Cover		nant Indicator	Dominance Test worksheet:
·	, 70 CO (C)	<u> Opqo</u>	<u>con _ condo</u> _	Number of Dominant Species That Are OBL, FACW, or FAC: (A)
•				Total Number of Dominant Species Across All Strata:
				ļ. `.
·				Percent of Dominant Species That Are OBL, FACW, or FAC: 33.3 (A/B)
	0	= Total	Cover	· ·
apling/Shrub Stratum (Plot size: Wcfland)	^		F.a. a	Prevalence Index worksheet:
Rosa myst flora			<i></i>	Total % Cover of: Multiply by: OBL species x 1 =
•				OBL species x1 = FACW species
·				FAC species x3 =
				FACU species
1	2	= Total	Cover	UPL species x5=
erb Stratum (Piot size: wetland)				Column Totals: <u>82</u> (A) <u>234</u> (B)
Pop Frivialis	- 4.7	<u>-7</u>	FACW	Prevalence Index = B/A = 2.85
Echelonimo arunhaumous Carex Ao		\ \ \ \ \	FACU FAC*	Hydrophytic Vegetation Indicators:
Jones tenus			FAC	Rapid Test for Hydrophytic Vegetation
				Dominance Test is >50%
				Prevalence Index is ≤3.01
				Morphological Adaptations¹ (Provide supporting
				data in Remarks or on a separate sheet)
	•			Problematic Hydrophytic Vegetation¹ (Explain)
o				Indicators of hydric sail and watered hydrates and
•	<u>80</u>	= Total	Cover	Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
	•			· · · · · · · · · · · · · · · · · · ·
(Plot size: Witland)			[Hydrophytic
(Plot size: Witland)				
		= Total		Vegetation Present? Yes <u>X</u> No

Depth' ′ Ma		th needed to docu			or confirm	tne absence of	indicators.)
nches) Color (moi	etrix ist) %	Color (moist)	ox Features %	Type ¹	Lac ²	Texture_	Remarks
O-7 2.575	 -	7.57R516		L	M	Siltlam	, ornano
		2			M	siltlom	eficky
7-10 2.575	<u> </u>	IDABAR	45		tal .	3117100M	Bree-A
							
						· .	
					 .		
		·					<u> </u>
pe: C=Concentration, D	=Depletion, RM	=Reduced Matrix, C	S=Covered	or Coate	d Sand Gra		on: PL=Pore Lining, M=Matrix.
dric Soil Indicators:							rs for Problematic Hydric Soils
Histosol (A1)		Dark Surface		. (00) (11			n Muck (A10) (MLRA 147)
_ Histic Epipedon (A2) _ Black Histic (A3)		Polyvalue Be Thin Dark St					lmont Floodplain Soils (F19) /ILRA 136, 147)
_ Hydrogen Sulfide (A4)		Loamy Gley			47, 140)		Parent Material (TF2)
Stratified Layers (A5)		Depleted Ma	-				Shallow Dark Surface (TF12)
2 cm Muck (A10) (LRR		Redox Dark	Surface (F	•		Oth	er (Explain in Remarks) .
Depleted Below Dark S		Depleted Da					
Thick Dark Surface (A1 Sandy Mucky Mineral (Redox Depro	-	-	RR N		
MLRA 147, 148)	on them is	MLRA 13		ر اکا (ل	>: > /1/		
Sandy Gleyed Matrix (S	S4)	Umbric Surfa		MLRA 13	5, 122)	³ Indica	tors of hydrophytic vegetation and
Sandy Redox (S5)		Piedmont Flo	oodplain Sc	ils (F19)	(MLRA 148	-	and hydrology must be present,
Stripped Matrix (S6)	_		_			unle	ss disturbed or problematic.
strictive Layer (if obser	vea):						,
Type:						Hydric Soil Pr	esent? Yes 🎘 No
Depth (inches):						- Hydric Soil Fi	esenti tes 🛌
emarks:							
	•						
		·	-				
DROLOGY			<u> </u>				
tland Hydrology Indica						-	•
tland Hydrology Indica						Surfac	e Soil Cracks (B6)
tland Hydrology Indica mary Indicators (minimur Surface Water (A1)		True Aqua	atic Plants (Surfac	e Soil Cracks (B6) ely Vegetated Concave Surface (E
tland Hydrology Indica mary Indicators (minimur Surface Water (A1) High Water Table (A2)		True Aqua Hydrogen	atic Plants (Sulfide Od	or (C1)	To Doots (Surfac Sparse Draina	e Soil Cracks (B6) ely Vegetated Concave Surface (E ge Patterns (B10)
tland Hydrology Indica mary Indicators (minimur Surface Water (A1) High Water Table (A2) Saturation (A3)		True Aqua Hydrogen Oxidized I	atic Plants (Sulfide Od Rhizospher	or (C1) es on Livi	ng Roots (C	Surfac Sparse Noss Moss	e Soil Cracks (B6) ely Vegetated Concave Surface (E ge Patterns (B10) Frim Lines (B16)
etland Hydrology Indica mary Indicators (minimur Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1)	<u>n of one is requi</u>	True Aqua Hydrogen Oxidized I	atic Plants (Sulfide Od Rhizospher of Reduce	or (C1) es on Livi d Iron (C4)	Surfac Sparse Draina C3) Moss Dry-Se	ely Vegetated Concave Surface (E ge Patterns (B10) Frim Lines (B16) ason Water Table (C2)
etland Hydrology Indica mary Indicators (minimur Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2	<u>n of one is requi</u>	True Aque Hydrogen Oxidized I Presence Recent Iro	atic Plants (Sulfide Od Rhizospher of Reduce on Reductio	or (C1) es on Livi d Iron (C4 on in Tilled		Surfac Sparse A Draina C3) Moss Dry-Se Crayfis	e Soil Cracks (B6) ely Vegetated Concave Surface (E ge Patterns (B10) Frim Lines (B16) eason Water Table (C2) en Burrows (C8)
etland Hydrology Indica mary Indicators (minimur Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2)	n of one is requi	True Aqua Hydrogen Oxidized I Presence Recent Inc	atic Plants (Sulfide Od Rhizospher of Reduce	or (C1) es on Livi d Iron (C4 on in Tilled C7))	Surfac Sparse A Draina C3) Moss Dry-Se Crayfis Satura	e Soil Cracks (B6) bly Vegetated Concave Surface (B ge Patterns (B10) Frim Lines (B16) bason Water Table (C2)
etland Hydrology Indica mary Indicators (minimur Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2	n of one is requi	True Aqua Hydrogen Oxidized I Presence Recent Inc	atic Plants (Sulfide Od Rhizospher of Reduce on Reduction	or (C1) es on Livi d Iron (C4 on in Tilled C7))	Surfac Sparse A Draina C3) Moss Dry-Se Crayfis Satura Stunte	e Soil Cracks (B6) ely Vegetated Concave Surface (B ge Patterns (B10) Frim Lines (B16) eason Water Table (C2) eh Burrows (C8) tion Visible on Aerial Imagery (C9
etland Hydrology Indica mary Indicators (minimur Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2 Drift Deposits (B3) Algal Mat or Crust (B4)	<u>n of one is requi</u>	True Aqua Hydrogen Oxidized I Presence Recent Iro Thin Muck	atic Plants (Sulfide Od Rhizospher of Reduce on Reduction	or (C1) es on Livi d Iron (C4 on in Tilled C7))	Surfac Sparse Norsina C3) Moss Ory-Se Crayfis Satura Stunte Geome	e Soil Cracks (B6) ely Vegetated Concave Surface (B ge Patterns (B10) frim Lines (B16) eason Water Table (C2) eth Burrows (C8) tion Visible on Aerial Imagery (C9 d or Stressed Plants (D1) orphic Position (D2) w Aquitard (D3)
etland Hydrology Indica mary Indicators (minimur Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2 Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5)	n of one is requi	True Aqua Hydrogen Oxidized I Presence Recent Iro Thin Muck	atic Plants (Sulfide Od Rhizospher of Reduce on Reduction	or (C1) es on Livi d Iron (C4 on in Tilled C7))	Surface Sparse A Draina C3) Moss Dry-Se Crayfis Satura Stunte Geome Shallor Microte	e Soil Cracks (B6) ely Vegetated Concave Surface (B ge Patterns (B10) frim Lines (B16) eason Water Table (C2) el Burrows (C8) tion Visible on Aerial Imagery (C9 d or Stressed Plants (D1) prophic Position (D2) w Aquitard (D3) poggraphic Relief (D4)
etland Hydrology Indica mary Indicators (minimur Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5)	n of one is requi	True Aqua Hydrogen Oxidized I Presence Recent Iro Thin Muck	atic Plants (Sulfide Od Rhizospher of Reduce on Reduction	or (C1) es on Livi d Iron (C4 on in Tilled C7))	Surface Sparse A Draina C3) Moss Dry-Se Crayfis Satura Stunte Geome Shallor Microte	e Soil Cracks (B6) ely Vegetated Concave Surface (B ge Patterns (B10) frim Lines (B16) eason Water Table (C2) eth Burrows (C8) tion Visible on Aerial Imagery (C9 d or Stressed Plants (D1) orphic Position (D2) w Aquitard (D3)
etland Hydrology Indical mary Indicators (minimur Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on A Water-Stained Leaves Aquatic Fauna (B13)	n of one is requi	True Aqua Hydrogen Oxidized I Presence Recent Iro Thin Muck	atic Plants (Sulfide Od Rhizospher of Reduce on Reduction	or (C1) es on Livi d Iron (C4 on in Tilled C7))	Surface Sparse A Draina C3) Moss Dry-Se Crayfis Satura Stunte Geome Shallor Microte	e Soil Cracks (B6) ely Vegetated Concave Surface (B ge Patterns (B10) frim Lines (B16) eason Water Table (C2) el Burrows (C8) tion Visible on Aerial Imagery (C9 d or Stressed Plants (D1) prophic Position (D2) w Aquitard (D3) poggraphic Relief (D4)
Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on A Water-Stained Leaves	n of one is requi) erial Imagery (B (B9)	True Aqua Hydrogen Oxidized I Presence Recent Iro Thin Muck	atic Plants (Sulfide Od Rhizospher of Reduced on Reduction c Surface (plain in Rer	or (C1) es on Livi d Iron (C4 on in Tilleo C7) marks))	Surface Sparse A Draina C3) Moss Dry-Se Crayfis Satura Stunte Geome Shallor Microte	e Soil Cracks (B6) ely Vegetated Concave Surface (B ge Patterns (B10) frim Lines (B16) eason Water Table (C2) el Burrows (C8) tion Visible on Aerial Imagery (C9 d or Stressed Plants (D1) prophic Position (D2) w Aquitard (D3) poggraphic Relief (D4)
etland Hydrology Indical mary Indicators (minimur Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on A Water-Stained Leaves Aquatic Fauna (B13) Id Observations: rface Water Present?	n of one is requi	True Aqua Hydrogen Oxidized I Presence Recent Iro Thin Much Other (Ex	atic Plants (Sulfide Od Rhizospher of Reducer on Reduction Surface ((plain in Res	or (C1) es on Livi d Irón (C4 on in Tilled C7) marks)) I Soils (C6)	Surface Sparse Norse Ory-Se Crayfis Satura Stunte Geome Shallo FAC-N	e Soil Cracks (B6) ely Vegetated Concave Surface (B ge Patterns (B10) Frim Lines (B16) eason Water Table (C2) eth Burrows (C8) tion Visible on Aerial Imagery (C9 d or Stressed Plants (D1) porphic Position (D2) w Aquitard (D3) pographic Relief (D4) leutral Test (D5)
etland Hydrology Indical mary Indicators (minimur Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on A Water-Stained Leaves Aquatic Fauna (B13)	n of one is requi	True Aqua Hydrogen Oxidized I Presence Recent Inc Thin Much Other (Ex	atic Plants (Sulfide Od Rhizospher of Reducer on Reduction Surface ((plain in Ret ches):	or (C1) es on Livi d Irón (C4 on in Tilled C7) marks)) I Soils (C6)	Surface Sparse Norse Ory-Se Crayfis Satura Stunte Geome Shallo FAC-N	e Soil Cracks (B6) ely Vegetated Concave Surface (B ge Patterns (B10) frim Lines (B16) eason Water Table (C2) el Burrows (C8) tion Visible on Aerial Imagery (C9 d or Stressed Plants (D1) prophic Position (D2) w Aquitard (D3) poggraphic Relief (D4)

WETLAND DETERMINATION DATA FORM - Eastern Mountains and Piedmont : :: Project/Site: 715 Westminsty-Pake City/County: Restriction 1 Battering Sampling Date: 12/9/18 Applicant/Owner: S.G.C. Investigator(s): H-Leskmen State: MD Sampling Point: News 28 h ______ Section, Township, Range: ___ Landform (hillslope, terrace, etc.): Техного Local relief (concave, convex, none): Сентич Slope (%): 2-5% Lat: ______ Long: _____ Soil Map Unit Name: Hatborns 18 Icams, 0-3% logs, PD ... NWI classification: N/A Are climatic / hydrologic conditions on the site typical for this time of year? Yes ______ No 🔀 🍍 (If no, explain in Remarks.) Are Vegetation N Soil N or Hydrology N significantly disturbed? Are "Normal Circumstances" present? Yes _ X__ No Are Vegetation N, Soil N, or Hydrology naturally problematic? (If needed, explain any answers in Remarks.) SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Is the Sampled Area Hydric Soil Present? within a Wetland? Yes__X_ No____ Wetland Hydrology Present? Remarks: & Annual precip to date 26 inches \$ (70%) above normal . Forested wetland on stream terrace VEGETATION - Use scientific names of plants. Absolute Dominant Indicator Dominance Test worksheet: Tree Stratum (Plot size: ____O, lac___) % Cover Species? Status Number of Dominant Species 1. Acer pubrum _ 45 Y EAC That Are OBL, FACW, or FAC: Total Number of Dominant Species Across All'Strata: Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B) Sapling/Shrub Stratum (Plot size: 0-lac) Prevalence Index worksheet: Total % Cover of: Multiply by: 1. Rosa moltiflera . 14 Y FACU OBL species _____ x1 = ____ FACW species ____ x2=____ FAC species _____ x3 = ____ FACU species _____ x4= ____ UPL species _____ x5 = ____ Herb Stratum (Plot size: 0: ac) Column Totals: ___ ____ (A) ____ (B) 1. Solidans sp Y FACT Prevalence Index = B/A = 2. Microstegium viminios 10 FAC Hydrophytic Vegetation Indicators: 7 Y FACW 3. I meature Capusis' 4. Coutowalls 6 5. Objecta stricty 5 Rapid Test for Hydrophytic Vegetation N FRIL ▲ Dominance Test is >50% _ 091 6. Symplacuspus foetidus Prevalence Index is ≤3.01 N GSL 7. Carer ap. Morphological Adaptations¹ (Provide supporting <u>n</u> fact data in Remarks or on a separate sheet) 8. Vunus effusis 3 N 081 Problematic Hydrophytic Vegetation¹ (Explain) ¹Indicators of hydric soil and wetland hydrology must 52 = Total Cover be present, unless disturbed or problematic. Woody Vine Stratum (Plot size: 0.10) 1. Lantera papaneca 10 Y FACU Hydrophytic

= Total Cover

Remarks: (Include photo numbers here or on a separate sheet.)

Vegetation Present?

Depth	Matrix		Redox	Features	:	· .	n the absence of ir	•
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc2	<u>Texture</u>	Remarks
0-5	2.575l2	_ 7 3	<u> 1078516</u>	22	_ <u></u>	M	Self lanery	•
5-10	107R516	100					sit loum	clayry
		<u> </u>			•		<u> </u>	·
			n					
		-						•
								
	· · · · · · · · · · · · · · · · · · ·							
		· ·			-			
lype: C=Col lydric Soil Ir		letion, RM=	Reduced Matrix, CS	=Covered	or Coate	d Sand G		n: PL=Pore Lining, M=Matrix. for Problematic Hydric Soil
Histosol (Dark Surface	(\$7)				Auck (A10) (MLRA 147)
	pedon (A2)		Polyvalue Bel		e (S8) (N	ILRA 147,		ont Floodplain Soils (F19)
Black His			Thin Dark Sur					RA 136, 147)
	Sulfide (A4)		Loamy Gleyed		2)			arent Material (TF2)
	Layers (A5)		X Depleted Matr					hallow Dark Surface (TF12)
	k (A10) (LRR N) Below Dark Surfac	e (A11)	Redox Dark S Depleted Dark				Other	(Explain in Remarks)
	k Surface (A12)	· (, ,	Redox Depres					•
	ıcky Mineral (S1) (I	.RR N,	Iron-Mangane			LRR N	•	
	147, 148)		MLRA 136				g	
	eyed Matrix (S4)		Umbric Surfac				•	rs of hydrophytic vegetation a
Sandy Re Stripped M	Matrix (S6)		Piedmont Floo	opiain Soi	iis (F19)	(MLKA 14		d hydrology must be present, disturbed or problematic.
	ayer (if observed):		<u> </u>			· ·	diness	distance of problematic.
1ype:						•		
Type: Depth (inch temarks:		<u></u>	_				Hydric Soil Pres	ent? Yes No
Depth (inch	nes):		_				Hydric Soil Pres	ent? Yes <u>\</u> No
Depth (inchemarks:	es):							
Depth (inchemarks: OROLOG	es): iY rology Indicators:		ed check all that ann	[v)		· 	Secondary In	dicators (minimum of two requ
Depth (inchange) Comprehensive Management (inchange) Comprehensive	iy rology Indicators: tors (minimum of o		ed; check all that app		314)		Secondary In	dicators (minimum of two requ Soil Cracks (B6)
Depth (incharge) Comprehensive the comprehensiv	oes):		True Aquati	c Plants (E			Secondary In Surface S	dicators (minimum of two requ Soil Cracks (B6) Vegetated Concave Surface (
Depth (incharge) Comprehensive the comprehensiv	iY rology Indicators: tors (minimum of o /ater (A1) ar Table (A2)		True Aquati Hydrogen S	c Plants (E ulfide Odo	or (C1)	ng Roots (Secondary In Surface S	dicators (minimum of two requ Soil Cracks (86) Vegetated Concave Surface (Patterns (810)
Depth (inchitemarks: YDROLOG Vetland Hydr rimary Indica Surface W High Water	rology Indicators: tors (minimum of o /ater (A1) er Table (A2)		True Aquati Hydrogen S Oxidized Rh	c Plants (E ulfide Odo ilzosphere f Reduced	or (C1) es on Livi Tron (C4)	Secondary In Surface S Sparsely Drainage C3) Moss Tri	dicators (minimum of two requ Soil Cracks (86) Vegetated Concave Surface (Patterns (810)
Depth (inchitemarks: OROLOG Vetland Hydr Vrimary Indica Surface W High Wate Saturation Water Ma	rology Indicators: tors (minimum of o /ater (A1) er Table (A2)		True Aquati Hydrogen S Oxidized Rh Presence of Recent Iron	c Plants (E ulfide Odd izosphere f Reduced Reduction	or (C1) es on Livi I Iron (C4 n in Tilled)	Secondary In Surface S Sparsely Drainage C3) Moss Trii Dry-Seas	dicators (minimum of two requison Cracks (86) Vegetated Concave Surface (Patterns (810) m Lines (B16) con Water Table (C2) Burrows (C8)
Depth (inchitemarks: DROLOG Vetland Hydromary Indica Surface Walter Mail Sediment Drift Depo	rology Indicators: tors (minimum of o /ater (A1) er Table (A2) er (A3) erks (B1) Deposits (B2) esits (B3)		True Aquati Hydrogen S Oxidized Rh Presence of Recent Iron Thin Muck S	c Plants (E ulfide Odo nizosphere Reduced Reduction Surface (C	or (C1) es on Livi I Iron (C4 n in Tilled (7))	Secondary In Surface S Sparsely Drainage C3) Moss Tri Dry-Seas Craylish Saturatio	dicators (minimum of two requisoil Cracks (86) Vegetated Concave Surface (Patterns (810) In Lines (816) Ion Water Table (C2) Burrows (C8) In Visible on Aerial Imagery (C
Depth (inchitemarks: /DROLOG /etland Hydromary Indica // Surface Water Mark Saturation Water Mark Sediment Drift Depo	rology Indicators: tors (minimum of o /ater (A1) er Table (A2) a (A3) rks (B1) Deposits (B2) sits (B3) or Crust (B4)		True Aquati Hydrogen S Oxidized Rh Presence of Recent Iron	c Plants (E ulfide Odo nizosphere Reduced Reduction Surface (C	or (C1) es on Livi I Iron (C4 n in Tilled (7))	Secondary In Surface S Sparsely Drainage C3) Moss Trii Dry-Seas Caylish Saturatio Stunted C	dicators (minimum of two requisor) Soil Cracks (B6) Vegetated Concave Surface (Patterns (B10) m Lines (B16) son Water Table (C2) Burrows (C8) n Visible on Aerial Imagery (Cor Stressed Plants (D1)
Depth (inch Remarks: **TOROLOG Vetland Hydr **Imary Indica **Emarks: **Surface W High Wate Saturation Water Ma Sediment Drift Depo Algal Mat Iron Depo	rology Indicators: tors (minimum of or /ater (A1) er Table (A2) a (A3) rks (B1) Deposits (B2) sits (B3) or Crust (B4) sits (B5)	ne is require	True Aquati Hydrogen S Oxidized Ri Presence of Recent Iron Thin Muck S Other (Expla	c Plants (E ulfide Odo nizosphere Reduced Reduction Surface (C	or (C1) es on Livi I Iron (C4 n in Tilled (7))	Secondary In Surface S Sparsely Drainage C3) Moss Tri Dry-Seas Crayfish Saturatio Stunted of	dicators (minimum of two requisoil Cracks (86) Vegetated Concave Surface (Patterns (810) In Lines (816) Ion Water Table (C2) Burrows (C8) In Visible on Aerial Imagery (Cor Stressed Plants (D1)
Depth (inch lemarks: /DROLOG Vetland Hydr /rimary Indica / Surface W High Water Saturation Water Man Sediment Drift Depo Algal Mat Iron Depo Inundation	res):	ne is require	True Aquati Hydrogen S Oxidized Ri Presence of Recent Iron Thin Muck S Other (Expla	c Plants (E ulfide Odo nizosphere Reduced Reduction Surface (C	or (C1) es on Livi I Iron (C4 n in Tilled (7))	Secondary In Surface S Sparsely Drainage C3) Moss Tri Dry-Seas Crayfish Saturatio Stunted of Geomorp	dicators (minimum of two requisoil Cracks (86) Vegetated Concave Surface (Patterns (810) In Lines (816) Ion Water Table (C2) Burrows (C8) In Visible on Aerial Imagery (Cor Stressed Plants (D1) In Position (D2) Aquitard (D3)
Depth (incharged) Verland Hydrogen Verland Hydrogen Verland Hydrogen Verland Hydrogen Surface W High Water Saturation Water Man Sediment Drift Depo Algal Mat Iron Depo Inundation Water-Sta	rology Indicators: tors (minimum of or /ater (A1) er Table (A2) i (A3) rks (B1) Deposits (B2) sits (B3) or Crust (B4) sits (B5) i Visible on Aerial II ined Leaves (B9)	ne is require	True Aquati Hydrogen S Oxidized Ri Presence of Recent Iron Thin Muck S Other (Expla	c Plants (E ulfide Odo nizosphere Reduced Reduction Surface (C	or (C1) es on Livi I Iron (C4 n in Tilled (7))	Secondary In Surface S Sparsely Drainage C3) Moss Tri Dry-Seas Crayfish Saturatio Stunted of Geomorp Microtopo	dicators (minimum of two requisoil Cracks (86) Vegetated Concave Surface (Patterns (810) In Lines (816) Ion Water Table (C2) Burrows (C8) In Visible on Aerial Imagery (Cor Stressed Plants (D1) Indic Position (D2) Aquitard (D3) Iographic Relief (D4)
Depth (inch Remarks: **DROLOG Vetland Hydr rimary Indica **Surface W High Water Saturation Water Mai Sediment Drift Depo Algal Mat Iron Depo Inundation Water-Sta Aquatic Fa	rology Indicators: tors (minimum of or tater (A1) ar Table (A2) a (A3) arks (B1) Deposits (B2) asits (B3) or Crust (B4) asits (B5) a Visible on Aerial II ined Leaves (B9) auna (B13)	ne is require	True Aquati Hydrogen S Oxidized Ri Presence of Recent Iron Thin Muck S Other (Expla	c Plants (E ulfide Odo nizosphere Reduced Reduction Surface (C	or (C1) es on Livi I Iron (C4 n in Tilled (7))	Secondary In Surface S Sparsely Drainage C3) Moss Tri Dry-Seas Crayfish Saturatio Stunted of Geomorp Microtopo	dicators (minimum of two requisoil Cracks (86) Vegetated Concave Surface (Patterns (810) In Lines (816) Ion Water Table (C2) Burrows (C8) In Visible on Aerial Imagery (Cor Stressed Plants (D1) In Position (D2) Aquitard (D3)
Depth (inch Remarks: **TOROLOG Vetland Hydr **Imary Indica **K Surface W High Water Saturation Water Ma Sediment Drift Depo Algal Mat Iron Depo Inundation **Water-Sta Aquatic Fater Irol Observa	rology Indicators: tors (minimum of or /ater (A1) er Table (A2) er (A3) er (B1) Deposits (B2) esits (B3) or Crust (B4) sits (B5) er Visible on Aerial II ined Leaves (B9) euna (B13)	ne is require	True Aquati Hydrogen S Oxidized Ri Presence of Recent Iron Thin Muck S Other (Expla	c Plants (E ulfide Odd nizosphere f Reduced Reduction Surface (C ain in Rem	or (C1) es on Livi I Iron (C4 n in Tillec (7) narks))	Secondary In Surface S Sparsely Drainage C3) Moss Tri Dry-Seas Crayfish Saturatio Stunted of Geomorp Microtopo	dicators (minimum of two requisoil Cracks (86) Vegetated Concave Surface (Patterns (810) In Lines (816) Ion Water Table (C2) Burrows (C8) In Visible on Aerial Imagery (Cor Stressed Plants (D1) Indic Position (D2) Aquitard (D3) Iographic Relief (D4)
Depth (inchitemarks: **TOROLOG** Vetland Hydromary Indication** **Surface Water Mailed Mater Mailed Mater Mailed Mater Mailed Mater Mailed Mater Mailed Mater Statemark Water-Statemark Mater-Statemark Mater Ma	rology Indicators: tors (minimum of or vater (A1) er Table (A2) er (A3) er (B1) Deposits (B2) esits (B3) or Crust (B4) esits (B5) en Visible on Aerial II ined Leaves (B9) euna (B13) etions: Present?	ne is require	True Aquati Hydrogen S Oxidized Rt Presence of Recent Iron Thin Muck S Other (Expl	c Plants (Eulfide Odd ulfide Odd ulzosphere f Reduced Reduction Surface (C ain in Rem	or (C1) es on Livi l Iron (C4 n in Tilleo 77) narks)) i Soils (C6	Secondary In Surface S Sparsely Drainage C3) Moss Tri Dry-Seas Crayfish Saturatio Stunted of Geomorp Microtopo	dicators (minimum of two requisoil Cracks (86) Vegetated Concave Surface (Patterns (810) In Lines (816) Ion Water Table (C2) Burrows (C8) In Visible on Aerial Imagery (Cor Stressed Plants (D1) Indic Position (D2) Aquitard (D3) Iographic Relief (D4)
Depth (inch Remarks: **DROLOG Vetland Hydr rimary Indica **Surface W High Water Saturation Water Man Sediment Drift Depo Algal Mat Iron Depo Inundation Water-Sta Aquatic Fa ield Observa urface Water Vater Table Pr	rology Indicators: tors (minimum of or/ater (A1) er Table (A2) er (A3) erks (B1) Deposits (B2) esits (B3) or Crust (B4) esits (B5) er Visible on Aerial II end Leaves (B9) eauna (B13) etions: Present? Yeseent?	magery (B7)	True Aquati Hydrogen S Oxidized Rh Presence of Recent Iron Thin Muck S Other (Expla	c Plants (Eulfide Odd ulfide Odd ulfosphere f Reduced Reduction Surface (C ain in Rem nes):	or (C1) es on Livi l Iron (C4 n in Tilleo 7) narks)) I Soils (C6	Secondary In Surface S Sparsely Drainage C3) Moss Tri Dry-Seas Crayfish Saturatio Stunted of Geomorp Shallow / Microtopo	dicators (minimum of two requisoil Cracks (86) Vegetated Concave Surface (Patterns (810) In Lines (816) Ion Water Table (C2) Burrows (C8) In Visible on Aerial Imagery (Cor Stressed Plants (D1) Inic Position (D2) Aquitard (D3) Iographic Relief (D4) Itral Test (D5)
Depth (incharmance) Verland Hydrogen Verland Hydrogen Verland Hydrogen Verland Hydrogen Verland Hydrogen Verland Hydrogen Verland Mater Mater Mater Mater Staturation Presencted Scapillo	rology Indicators: tors (minimum of or vater (A1) er Table (A2) a (A3) rks (B1) Deposits (B2) sits (B3) or Crust (B4) sits (B5) a Visible on Aerial II ined Leaves (B9) auna (B13) atlons: Present? resent? yeary fringe)	magery (B7)	True Aquati Hydrogen S Oxidized Rt Presence of Recent Iron Thin Muck S Other (Explain) Depth (inch Depth (inch Depth (inch	c Plants (Eulfide Odd ulfide Odd ulzosphere f Reduced Reduction Surface (C ain in Rem nes):	or (C1) es on Livi l Iron (C4 n in Tilleo 77) narks)) i Soils (C6	Secondary In Surface S Sparsely Drainage C3) Moss Tri Dry-Seas Crayfish Saturatio Stunted of Geomorp Shallow / Microtopo FAC-Neu	dicators (minimum of two requisoil Cracks (86) Vegetated Concave Surface (Patterns (810) In Lines (816) Ion Water Table (C2) Burrows (C8) In Visible on Aerial Imagery (Cor Stressed Plants (D1) Inic Position (D2) Aquitard (D3) Iographic Relief (D4) Itral Test (D5)
Depth (incharmance) Verland Hydrogen Verland Hydrogen Verland Hydrogen Verland Hydrogen Verland Hydrogen Verland Hydrogen Verland Mater Mater Mater Mater Staturation Presencted Scapillo	rology Indicators: tors (minimum of or vater (A1) er Table (A2) a (A3) rks (B1) Deposits (B2) sits (B3) or Crust (B4) sits (B5) a Visible on Aerial II ined Leaves (B9) auna (B13) atlons: Present? resent? yeary fringe)	magery (B7)	True Aquati Hydrogen S Oxidized Rh Presence of Recent Iron Thin Muck S Other (Expla	c Plants (Eulfide Odd ulfide Odd ulzosphere f Reduced Reduction Surface (C ain in Rem nes):	or (C1) es on Livi l Iron (C4 n in Tilleo 77) narks)) i Soils (C6	Secondary In Surface S Sparsely Drainage C3) Moss Tri Dry-Seas Crayfish Saturatio Stunted of Geomorp Shallow / Microtopo FAC-Neu	dicators (minimum of two requisoil Cracks (86) Vegetated Concave Surface (Patterns (810) In Lines (816) Ion Water Table (C2) Burrows (C8) In Visible on Aerial Imagery (Cor Stressed Plants (D1) Inic Position (D2) Aquitard (D3) Iographic Relief (D4) Itral Test (D5)
Depth (incharmanch incharmanch	rology Indicators: tors (minimum of or/ater (A1) er Table (A2) er (A3) er (B1) Deposits (B2) esits (B3) or Crust (B4) esits (B5) er Visible on Aerial II end Leaves (B9) eauna (B13) etitons: Present? eresent? eresent.	magery (B7) es N es N gauge, mon	True Aquati Hydrogen S Oxidized Rt Presence of Recent Iron Thin Muck S Other (Explain) Depth (inch Depth (inch Depth (inch	c Plants (Eulfide Odd ulfide Odd ulizosphere f Reduced Reduction Surface (C ein in Rem nes): nes): notos, prev	or (C1) es on Livi l Iron (C4 n in Tillec r7) narks)) i Soils (C6	Secondary In Surface S Sparsely Drainage C3) Moss Tri Dry-Seas Crayfish Saturatio Stunted of Geomorp Shallow / Microtopo FAC-Neu	dicators (minimum of two requisoil Cracks (86) Vegetated Concave Surface (Patterns (810) In Lines (816) Ion Water Table (C2) Burrows (C8) In Visible on Aerial Imagery (Cor Stressed Plants (D1) Inic Position (D2) Aquitard (D3) Iographic Relief (D4) Itral Test (D5)

Steep Slopes Worksheets and SSA Workmap

715 Wedmmeter Piler
Steep Slope and Erodible Soils Analysis Data

Transect	Transect A		A A			·
Segment				· ·	3	
	Value	Score	Value	Score	Value	Score
Slope	3.8%	O.	7.0%	0	10.10/0	5
Slope Length	1327	5	957'	10	1037	1.0
SEI	High	10.	Medium	.6	Medium	5
Cover	Fieldly	0	Field(g)	0	Fribly)	0.
Sed. Delivery	1242	•	417	0	337′	0
TOTAL	, . 	15		15		.20

Transect	A		A		A	
Segment	.4	.4			. 6	
	Value	Score	Value .	, Score ,	Value	Score
Siope	2.3%	0	7.50%	0	10.10%	5
Slope Length	1073	10	12191	10	1274	10
SEI	Medium	5	Medium	5	Medium	5
Cover	Freld(g)	Ø	Fieldly)	ø	Freldly	0
Sed. Delivery	301	0	155'	5	100'	5
TOTAL		15		20		25

Transect	ct A		• 1				
Segment	7				ļ. ·		
	Value	Score	.Value	Score	Value	. Score	
Slope	6.5%	0					
Slope Length	1374	10					
SEI	High	.) 0		,			
Cover	bovelsky)	. 80				-	
Sed. Delivery	o'	10		,			
TOTAL	. · · ·	40	1	•			

715 Westminster Piky

Transect		· · · · · · · · · · · · · · · · · · ·	E	•	1	В	
Segment	. 1		چ		3		
	Value	Score	Value	Score	Value	Score	
Slope	3.3%	Ø	4.3%	. 0	11-10/0	. 5	
Slope Length	135	5	802'	10_	892'	10	
SEI	High	EO .	Medeun	. 5.	Mediam	5	
Сочег	field (y)	.0	fieldly)	0	Field(0)	0	
Sed. Delivery	1126	0	459/	0	3691	0 .	
TOTAL		15		15		20 .	

Transect	3		B	B		3 .
Segment			2		6	
, .	Value	Score	Value	Score	Value	Score
Slope	8.80%	O	10.2%	5	6.3%	0
Slope Length	9601	10	1058	10	1121	10
SEI	Medium	5	Medium	5	Medium	\$
Cover	fieldly)	Ø	field(g)	o	Freitly)	.0
Sed. Delivery	301	0	203	5	140"	S
TOTAL		15		25		20

	<u>,</u>	<u> </u>	<u> </u>			
Transect	8	8 ·		6		
Segment	7		3			
	. Value	Score	.Value	Score	Value	. Score
Slope-	15.0%	5	6.0%	··`O .		
Slope Length	1161	10	1261	10		
SEI	Medicar	5	14.00	1 <i>0</i>		
Cover	Fulds)	. 0	burslaij)	10		
Sed. Delivery	\$00°	5	0"	10		
TOTAL		25		40		

715 Westminster Pilce

Transect	С		2		3	
Segment						
	Value	Score	Value	Score	Value	Score
Slope	3.8%0	0	5.9%	0	6.3%	0
Slope Length	137	5	817	10	849'	10.
SEI	High	10	Medium	. 5	Medium	5
Cover	field(y)	O	fieldly)	D	Field(y)	, O .
Sed. Delivery	981'	0'	301	ð	2691	5-7
TOTAL		!ક		15		26

Transect	С	С		c		•	
Segment	4		.5				
	Value	Score	Value.	Score	Value	Score	
Slope	14.20/0	5	10.20/10	5			
Slope Length	1013"	10	11181	10			
SEI .	medium	5	Medium	· 5			
Cover	field(g)	Ø	barelass	10			
Sed. Delivery	100'	5	o'	10.		<u>`</u>	
TOTAL	,	25		40	<u> </u>		

4								
Transect	D		D.	D .		·		
· Segment	·		2	2		<u></u>		
	. Value	Score	Value	Score	Value	. Score		
Slope	3.8%	O	5.8%	0	14.0%	5		
Slope Length	137	5	8591	10	9.161	10.		
SEI	High	I D	Medium	5	Medium	5		
Cover	field(g)	. 0	fullg	0	frelik(g)	0.		
Sed. Delivery	10801	Ø	357	0	301'	a		
TOTAL		15	,	15		20		

715 Westminster Pike

Transect	D 4		. D	. D		D	
Commont.			5		6		
Segment _·	Value	Score	Value	Score	Value	Score	
Slope	12.8%	5	6,6%	ø	5.0%	0	
Slope Length	1057	10	1117	10	1217	10	
SEI	Medium	5	High	£ O	(4) (4)	10	
Cover	Freidleg)	O	Fieldly)	0	barelelis	10	
Sed. Delivery	140	<u> </u>	too	5	00	10	
ŢOTAL		25		is	<u> </u>	. 40 .	

Transect	E		E		E	
Segment			.2	2		
. Segment	Value	Score	Value	Score	Value	Score
Slope	3.8%	. 0	5.1%	0	10.5%	5
Slope Length	137	5	581'	10	619'	IU
SEI	High	10	Medium	5	Medium	· 5
Cover	F 410(4)	0.	fieldly)	ð	Freidly	0
Sed. Delivery	827	. 0	383	0	345	0
TOTAL		15		15	<u> </u>	20

Transect	'E	F		<u> </u>		E	
. Segment	. 4		5		6		
. Geginent	Value	Score	.Value	Score	Value	. Score	
Slope	9,1%	Ø	7,0%	- 0	13.300	5	
Slope Length	663'	10	834"	10	864	10	
SEI	Medium	5	Medium	<u> </u>	wagen	5	
Cover	field(s)	0	Fully)	0	Frelity)	0.	
Sed. Delivery	301	0	1301	5	1001	5	
TOTAL		15		20	<u> </u>	25	

715 Westminster Alex

Transect	E		•		F	
Segment	Value	Score	Value	Score	Value	Score
Slope	8.0%	0			2.5%	. 0
Slope Length	964	10			80'	5
SEI	14.64	10			High	10
Cover	barelad)	ro			FieldCas	Ø
Sed. Delivery	0/	. 1.0 .	•		571	0
TOTAL		40				. 15

Transect	F	F		F		F	
Segment	2		3		4		
	Value	Score	Value	Score	Value	Score	
Slope	0.7%	O	13.3%	5	80.1%	5	
Slope Length	290'	ig.	350	10	376'	10	
SEI ·	Medium	5	Medium	. 5	Medium	2	
Cover	f==[d(g)	<i>0</i>	fre 18(9)	0	fieldly).	· O	
Sed. Delivery	361	6	308	0	275'	5	
TOTAL		15		20		25	

Transect	F		F	F		*
Segment	5		6		3	
	Value	Score	Value	Score	Value	. Ѕсоге
Slope	7.7%	0	7,3%	- 0	11.000	ς.
Slope Length	441	0	551	10	651	lu
SEI	Medium	5	High	10	High	10
Cover	Field(g)	0	field(g)	0	bare(w))	10
Sed. Delivery	210	5	1001	5	0'	100
TOTAL	··	20		25		45 .

715 Wastminster Piky

Transect	G		. 6-	. 6		
Segment			2		3	
	 Value	Score	Value	Score	Value	Score
Slope	2.5%	0	5.2%	0	10.2%	5
Slope Length	761	5	2891	10	407	10
SEI	Itigh	10 - 2	Medeum	.5.	Medium	\$_
Cover	fn9(4)	0	fully)	D	field(g)	Q
Sed. Delivery	632'	Ø .	4191	Ó	301'	0
TOTAL		15		15		.20

	Transect	G-		5		<i>G</i>	
	Segment						
. <u> </u>		Value	Score	Value .	Score	Value	Score
Slope	_	7.30/0		2,30/0	Ø	11.0%	5
Slope Leng	gth	599'	10	408'	10	708	10
SEI		Medium	5	High.	10	Han	10
Cover		field(g)	0	field(y)	0	bure(ud)	10
Sed. Delive	ery	130'	5	1001	5	0.0	. 10
TOTAL		,	20		25		45

Transect						
Segment						
	Value	Score	.Value	Score	Value	. Score
Slope					· · ·	
Slope Length						
SEI						
Cover _	• -					. ,
Sed. Delivery						
TOTAL	•					

USACOE Wetland Certification

DEPARTMENT OF THE ARMY BALTIMORE DISTRICT, U.S. ARMY CORPS OF ENGINEERS P.O. BOX 1715 BALTIMORE, MD 21203-1715

U.S. ARMY CORPS OF ENGINEERS

CERTIFIES THAT

HENRY A. LESKINEN

CÉRTIFICATE NUMBER: WDCP93MD0310006A

has successfully demonstrated

to the U.S. Army Corps of Engineers, Baltimore District,

.sufficient understanding of, and the capability to

perform satisfactory wetland delineations consistent with, the

Corps 1987 Wetland Delineation Manual and supplemental guidance.

This verifies that wetland delineations performed by the

certified wetland delineator named above will receive expedited

consideration and acceptance by the certifying district, for

purposes of the Corps' final determination of wetland

jurisdiction pursuant to Section 404 of the Clean Water Act.

Donald W. Roeseke

Chief, Regulatory Branch

Baltimore District

April 23, 1993

*This is a provisional certification for the purposes of the demonstration phase of the Corps Wetland Delineator Certification Program

Wetland and Simplified Forest Stand Delineation Plan

GRASSPROTECTA™

Installation Guide

GRASSPROTECTA is a tough, flexible, long lasting extruded polyethylene mesh. Available in two grades (Standard & Heavy) and supplied in two roll sizes (6.56' x 65.6' x 3.25' x 32.8'), GRASSPROTECTA can be effectively employed onto stable ground by unrolling and pinning adjacent and successive lengths using metal U-pins. After time the grass grows through the mesh and reaches a convenient height to be mown. The area quickly adopts a natural appearance with the grass plants intertwined with the mesh to provide permanent protection against wear. Installation is best carried out during the growing season to allow a strong interlock between mesh and grass, although GRASSPROTECTA can be installed throughout the year as appropriate.

Installation Method

A. EXISTING GRASSED AREA

- The surface must be reasonably flat, level, firm and freedraining enough to sustain the proposed traffic. Fill shallow depressions with free-draining sandy soil. Level and consolidate. Apply seed before or after mesh installation as preferred. Alternatively, lift turf locally, fill the low area with sandy soil, consolidate and replace turf to level.
- Prior to permanent fixing of the mesh, it is advisable to unroll it and pin loosely at each corner to allow the mesh to relax and regain its natural flatness for a minimum of one hour prior to permanent fixing. Ambient temperature variations will influence the time period required for the mesh to relax and lay flat.
- Fixing Pins (50 per bag) For the most effective pinning, a single roll will require a minimum four bags (200 pins). Installations of two or more rolls will require a minimum of three bags (150 pins) per roll plus one extra bag more than the total roll quantity ordered.
- 4. All outer edges of mesh will require pins at 12 14" maximum centers. Pins in the middle of the roll will be in three equally off-set rows in a chevron type pattern at 20" apart (roll width) and at maximum 30" centers (roll length). On multi-roll installations the edge pins will overlap and fix two adjacent butted edges. Pins should be inserted parallel to the mesh and flush within the structure to avoid exposure at the surface. Try to avoid inserting pins across and above the top strand of mesh. Refer to diagram for suggested pinning layout.

- 5. Position the mesh where required on the prepared surface. Starting from a corner of the roll and maintaining the mesh as taut and straight as possible at all times, fix the first edge (length) and then go back to the start and fix one end of the roll using the metal U-Pins (12 14" centres). Do not fix both ends or both edges at this stage. Always work in the same direction along the mesh length to keep the mesh taut and to avoid ripples.
- 6. Working progressively along and across the mesh and away from the first pinned corner, insert three more rows of pins down the center of the roll in the chevron type layout as described (three rows at 20" apart & at 30" centres down the length). Continue this until all pins are in place except for the leading edge and the roll end.
- 7. For single roll installations, fix the leading edge (length) and the final roll end (12 14" centers) to complete the operation.
- For multi-roll installations, position the next roll for fixing.
 Adjacent rolls must be butt jointed and not overlapped. For sites
 with variations in temperature, it is recommended to leave a gap
 between rolls for heat expansion (See Notes). Continue across
 the site using this method until fully installed.

Additional pins may be required as determined by specific site and weather conditions and to secure any bridged or raised/tented sections of mesh where evident. Installation in cold weather conditions may benefit from fixing adjacent rolls approximately 1cm apart to allow for thermal expansion in hot weather.

Vehicle access routes • Overflow car lots • Pedestrian and ADA accessibility • Golf cart paths • Walkways Boat access • Light aircraft taxiways/parking • Slope stabilization • HGV access (determined by ground conditions)

Secured with U-pins

Mesh after installation

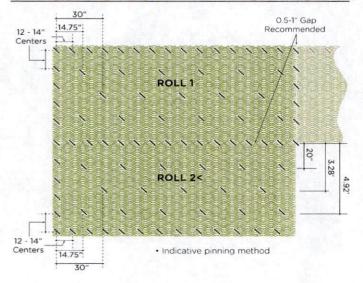
After installation - grass grows through quickly

TYPAR Geosynthetics 70 Old Hickory Blvd Old Hickory, TN 37138 | USA Tel: +1 800 541 5519

e.mail: geo.sales@pginw.com | www.typargeosynthetics.com.com

Installation Guide

- 9. When satisfied that the mesh is laid flat and fixed securely, a brushing of free-draining sandy topsoil may assist in levelling any minor low spots, but is not essential. It is not advisable to completely fill or cover the mesh with soil. A dressing of seasonal fertilizer and any appropriate irrigation will encourage new grass growth to be made more rapidly through the mesh.
- 10. Best results are obtained by restricting trafficking until after the grass has thoroughly established through the mesh and the grass has been cut several times. This process normally takes six to eight weeks during the growing season and early use will affect grass establishment. The area can be trafficked immediately if necessary, but exposed mesh may present reduced traction in wet or frosty conditions and advisory signage to this effect may be required.
- Mowing can be carried out as normal, but blades should be set higher for the first three to four cuts to enable the grass to grow through and fully intertwine with the structure.
- 12. After installation and establishment, warm weather conditions may cause localized raised 'tented' mesh areas to become apparent through expansion. These localized raised areas can be further secured by placing additional U-pins as required.

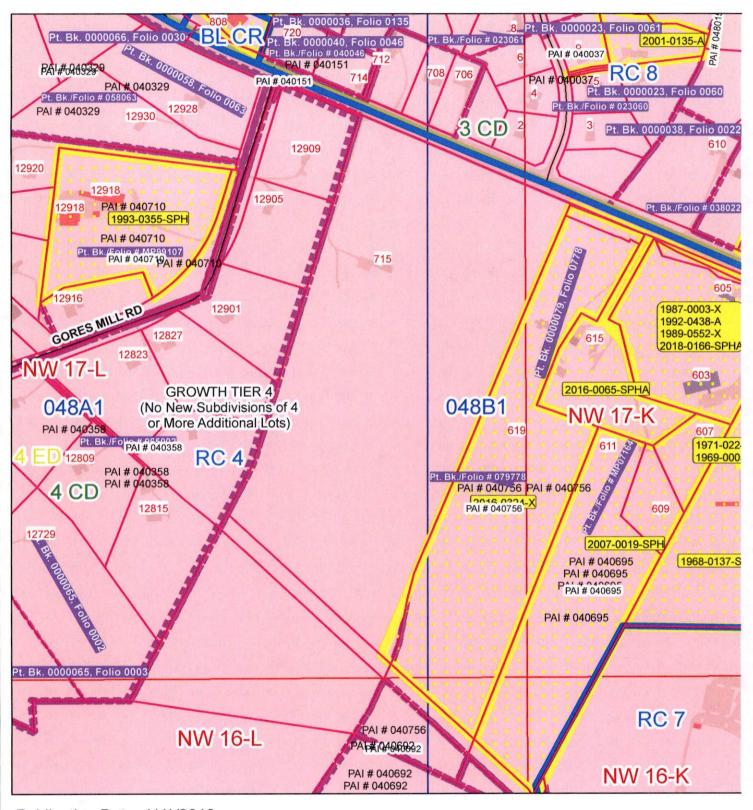

B. NEWLY SOWN LANDSCAPED AREAS

- A seeded surface will require significantly longer for the grass to establish through the GRASSPROTECTA mesh. GRASSPROTECTA can be installed directly onto newly installed turf.
- The site must be clear of debris, reasonably flat and level, well consolidated and free-draining enough to enable it to sustain the proposed traffic.
- Having prepared the seedbed, grass seed can be sown before or after the mesh installation. Turfed areas are prepared and installed as normal.
- 4. Continue with points two through twelve above.

Notes

- Where weak and / or waterlogged ground conditions exist, these must be improved prior to placement of GRASSPROTECTA. For occasional use by HGV's, a sub-base may be required.
- Advice on suitability for specific applications is available from TYPAR Technical advisors.
- GRASSPROTECTA can become slippery when wet (before the grass has had a chance to grow through). TYPAR strongly recommends that all newly installed mesh is cordoned off and signage erected to advise of any potential slip hazards.
- Expansion and contraction in hot climates: For installations where there may be broad +/- day to night temperature variations or where installations are carried out in spring and summer, it is recommended that a .5-1" gap is left between adjacent rolls and that rolls are pinned individually.

GRASSPROTECTA PINNING DIAGRAM


*Manufacturing tolerances (maximum +/-) to length and width apply to the final dimensions of this product. Length +19.7". Width +1.97"/-0.8". Specification Data is obtained from routine production sampling, therefore figures are nominal and may not necessarily be representative of the product supplied but will be within manufacturing tolerances.

The information contained herein is, to the best of our knowledge, accurate in all material respects. However, since the circumstances and conditions in which such information and the products mentioned herein can be used may vary and are beyond our control, no representation or warranty, express or implied, of any nature whatsoever is or will be made and no responsibility or liability is or will be accepted by us, any of our affiliates or our or their respective directors, officers, employees or agents in relation to the accuracy or completeness or use of the information contained herein or any such products and any such liability is expressly disclaimed.

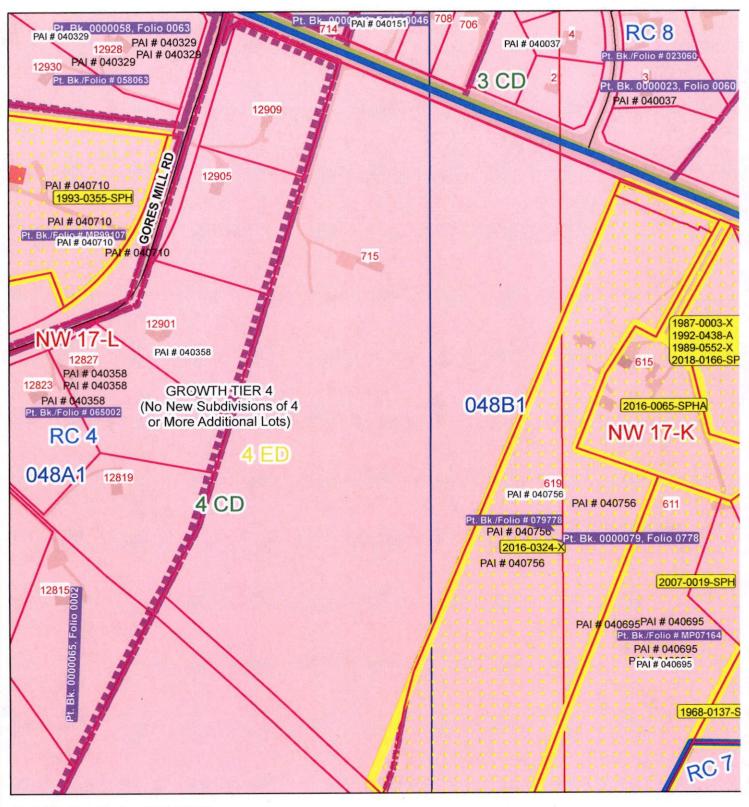
™ indicates a trade mark of Polymer Group, Inc., many of which are registered in a number of countries around the world.

715 West nster Pike, Tax #0 15-077-025



Publication Date: 11/1/2018

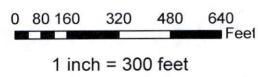
Publication Agency: Permits, Approvals & Inspections Projection/Datum: Maryland State Plane, FIPS 1900, NAD 1983/91 HARN, US Foot



1 inch = 400 feet

Item#0147

715 West master Pike, Tax #0 15-077-025

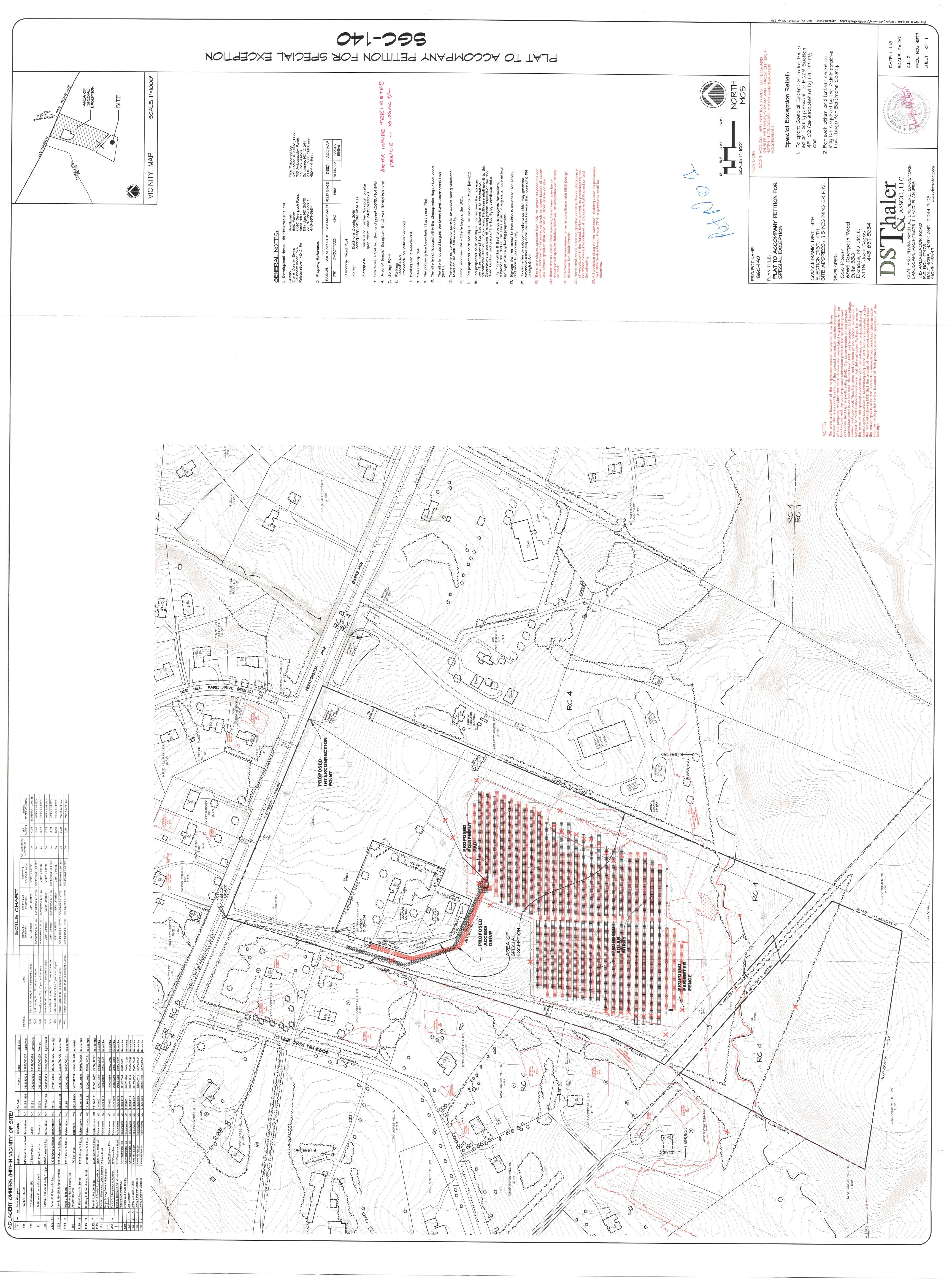


Publication Date: 11/1/2018

Publication Agency: Permits, Approvals & Inspections Projection/Datum: Maryland State Plane, FIPS 1900, NAD 1983/91 HARN, US Foot

Item#0147

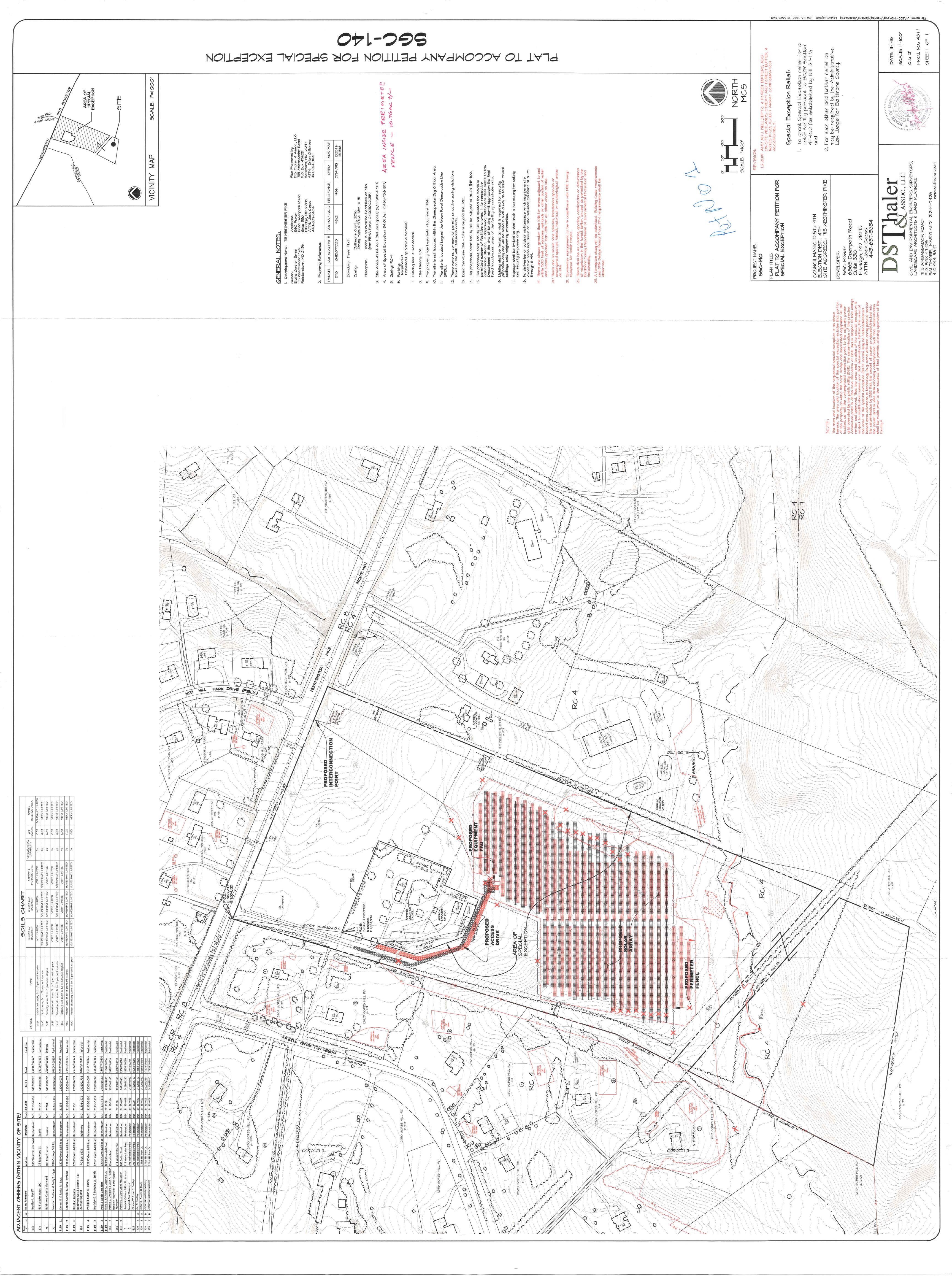
DEPARTMENT OF PERMITS, APPROVALS AND INSPECTIONS ZONING REVIEW OFFICE

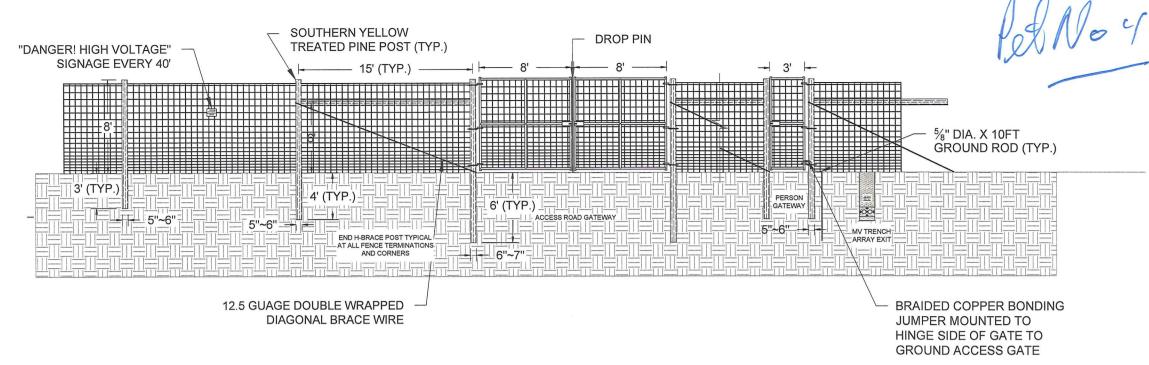

ADVERTISING REQUIREMENTS AND PROCEDURES FOR ZONING HEARINGS

The <u>Baltimore County Zoning Regulations</u> (BCZR) require that notice be given to the general public/neighboring property owners relative to property which is the subject of an upcoming zoning hearing. For those petitions which require a public hearing, this notice is accomplished by posting a sign on the property (responsibility of the legal owner/petitioner) and placement of a notice in a newspaper of general circulation in the County, both at least fifteen (15) days before the hearing.

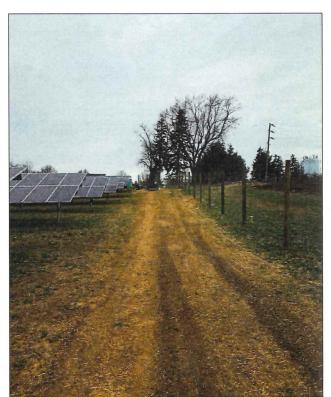
Zoning Review will ensure that the legal requirements for advertising are satisfied. However, the legal owner/petitioner is responsible for the costs associated with these requirements. The newspaper will bill the person listed below for the advertising. This advertising is due upon receipt and should be remitted directly to the newspaper.

OPINIONS MAY NOT BE ISSUED UNTIL ALL ADVERTISING COSTS ARE PAID.


For Newspaper Advertising:
Case Number: 2019 - 0147 - X
Property Address: 715 Westminster Pike
Property Description: south of Westminsten Pike, 1/2 373 south.
Legal Owners (Petitioners): Elaine Oursler Burns
Contract Purchaser/Lessee: SGC Power, LLC
PLEASE FORWARD ADVERTISING BILL TO: Name: Lawrence E. Schmidt, Esquire
Company/Firm (if applicable): Smith, Gildea & Schmidt, LLC
Address: 600 Washington Avenue, Suite 200
Towson, MD 21204
Telephone Number: 410-821-0070



TIBIHXE TAIRER
OTI-095



File name: U:/SGC-140/dwg/Planning/Exhibits/Aerial Exhibit.dwg Layout: Layout: Dec 27, 2018-11:43am SAM

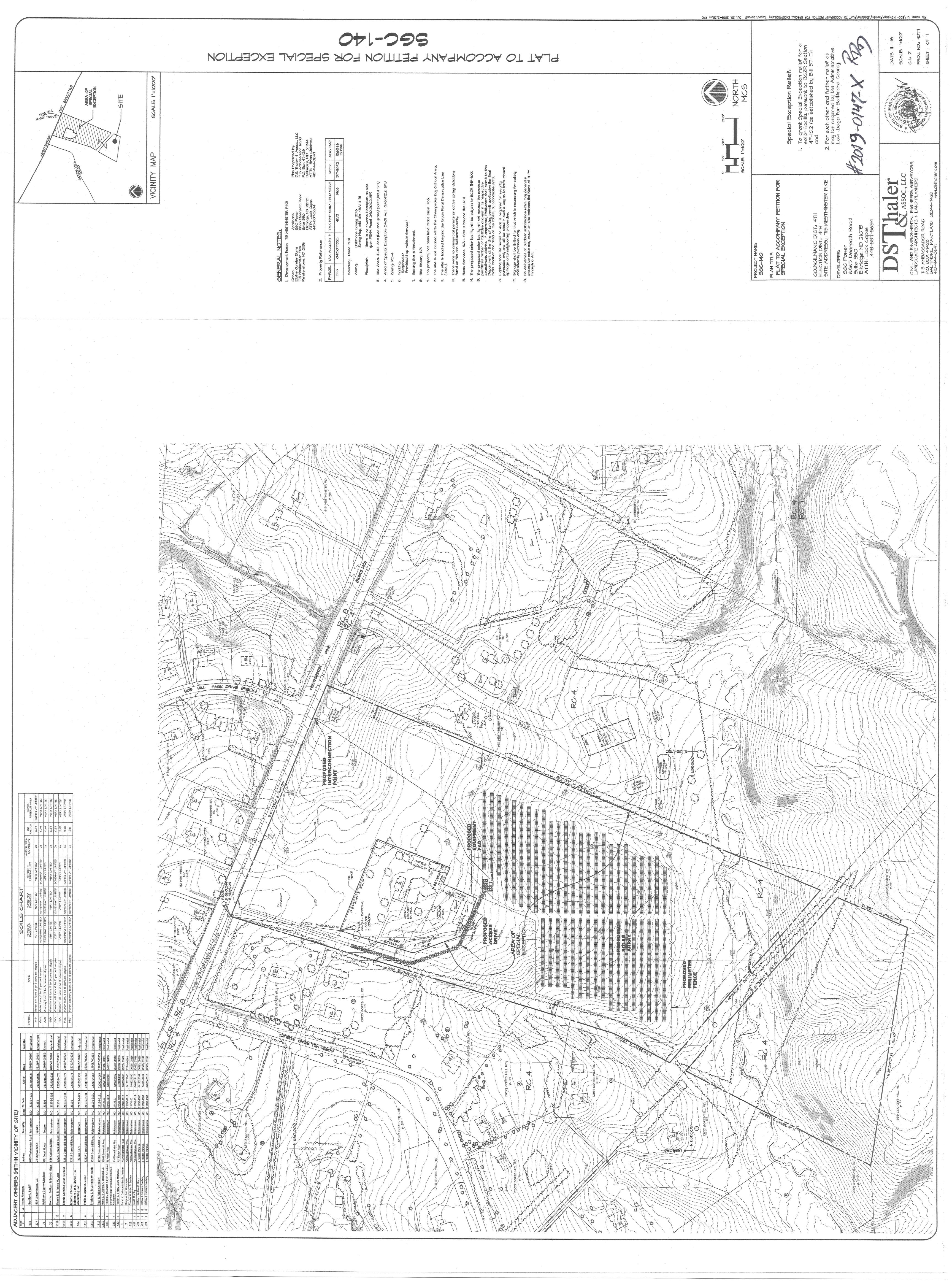
AGRICULTURAL FENCING DETAILS Scale: NTS

MODULE	SYSTEM SIZE (DC / AC)	SPECIFIC PRODUCTION	RACKING		WIND SPEED	EXPOSURE CATEGORY
MODULES @ STC	/				MPH	
QUANTITY	INVERTER	ESTIMATED YIELD	TILT ANGLE	AZIMUTH	HIGH TEMP	LOW TEMP
MODULES (STRINGS OF)	[]		°	°	°C	°C
	NOT F	OR CONSTRUCTION - DRAWING FOR BID PURPOSES ONLY	' - EQUIPMENT SUBJECT TO CI	HANGE		

THIS DRAWING IS THE PROPERTY OF SGC POWER, LLC. THE INFORMATION CONTAINED IN THIS DOCUMENT SHALL NOT BE DISCLOSED TO OTHERS WITHOUT THE WRITTEN CONSENT OF SGC POWER, LLC.

DETAIL

FENCING AGRICULTURAL


> DRAWING SIZE 11X17 MEASURE 1/2":

DRAWN BY **AMLW**

DATE 12/27/2018

SCALE

NONE

